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Abstract— Emerging non-volatile memory (NVM) has been
considered as a promising candidate for the next generation
memory architecture because of its excellent characteristics.
However, the endurance of NVM is much lower than DRAM.
Without additional wear management technology, its lifetime can
be very short, which extremely limits the use of NVM. This
paper observes that the tail wear with a very small percentage
of extreme deviation significantly hurts the lifetime of NVM,
which the existing methods do not effectively solve. We present
Lamina to address the tail wear issue, in order to improve
the lifetime of NVM. Lamina consists of two parts: bounded
tail wear leveling (BTWL) and lightweight wear enhancement
(LWE). BTWL is used to make the wear degree of all pages
close to the average value and control the upper limit of tail
wear. LWE improves the accuracy of BTWL by exploiting the
locality to interpolate low-frequency sampling schemes in virtual
memory space. Our experiments show that compared with the
state-of-the-art methods, Lamina can significantly improve the
lifetime of NVM with low overhead.

I. INTRODUCTION

Main memory technology plays a crucial role in computer

architecture. Emerging non-volatile memory (NVM) technolo-

gies such as phase change, spin-torque transfer, resistive mem-

ories [7], [15] bring new opportunities to the main memory

architecture design [17]. Because of the characteristics of high

capacity, low energy consumption, and byte addressing ability,

NVM becomes the competitor of traditional DRAM. However,

the endurance of NVM cells is much lower than DRAM.

For example, the write limit of PCM based NVM is between

107 − 108 [12]. By contrast, the write endurance of DRAM

is above 1015 [5]. Moreover, the write accesses to memory

are commonly highly skewed. Fig. 1 shows the percentile of

the number of memory write accesses over different pages

within one minute. The selected benchmarks are from SPEC

2017 [2]. It illustrates that a very small percentage of the pages

were written too much. The skewed write distribution on NVM

memory will further reduce its lifetime, which greatly limits

its application.

In order to prolong the lifetime of NVM, many wear

leveling algorithms [19], [13], [5], [4], [9], [12], [10], [16],

[3] have been proposed to make the write access evenly

distributed on all cells of NVM. These work can be classified

into two categories, age-based methods [9], [3], [19] and

randomization-based ones [13], [12], [5], [10]. The age-based

methods distinguish severely worn NVM areas from slightly

worn ones, and try its best to put the new write accesses in the

slightly worn areas. Segment swapping [19] records the write

count of each segment. If a segment is written too many times,

Fig. 1: The percentile of write count to each memory page.

Taking gcc for example, the write count of the hottest page is

14835, while that of a nearly hottest page ranked at top 0.1%

is 5644, and that of a page ranked at top 1% is 1001. It shows

writes to memory pages is extremely unbalanced.

this segment is swapped with the least used segment with

the help of an address mapping table. UWLalloc [9] records

the allocation counts of memory blocks and tries its best to

allocate memory blocks with the smallest allocation count

upon memory request. The randomization-based methods try

to put writes into the memory areas randomly. Security refresh

[13] dynamically generates random keys to change the address

mapping. Start-Gap [12] uses two registers (start register and

gap register) to swap the selected memory area with its

adjacent area. Kevlar [5] uses a random shuffle method to

achieve the uniform distribution of write accesses.

We propose Lamina, an OS-level memory wear manage-

ment scheme, which consists of two major modules. The first

is bounded tail wear leveling, which is designed based on

the idea of equal margin and tries to make the result of wear

leveling approximate the ideal. The second is lightweight wear

enhancement, which is used to improve the accuracy of low-

frequency sampling schemes by exploiting the locality prin-

ciple of virtual memory space to interpolating the sampling

points. This module can improve the sampling accuracy, and

thus improve the effect of wear leveling with low overhead.

We used SPEC 2017 benchmarks to evaluate the proposed

work. Experimental results show Lamina can prolong the

lifetime of NVM by 81.4× on average with low performance

overhead.

Our contributions can be summarized as follows:

• Based on the experimental evaluation, we observed that

the lifetime of NVM is hurt by a small percentage

of extreme tail wear, which existing methods does not

effectively solve.

• We propose a novel bounded tail wear leveling method,

which solves the problem of long tail wear.

• We propose a lightweight wear enhancement method,



which improve the sampling accuracy via interpolation,

and finally improves the effectiveness of wear leveling

with low overhead.

• Extensive experimental results show that Lamina can ef-

fectively prolong the lifetime of NVM with low overhead,

compared to existing methods.

The rest of this paper is organized as follows. Section

II describes observations and motivations. Section III details

the design of Lamina. Section IV presents the evaluation

results and analysis. Section V discusses the related work.

We conclude this paper in Section VI.

II. MOTIVATION

We co-design Lamina with memory management of oper-

ating system, which is mainly motivated by the following two

observations.

A. Tail Wear Problem

(a) No Wear Leveling (b) Random Shuffle

(c) Segment Swapping (d) Start-Gap

Fig. 2: The percentile of the writes over time during program

running. Although the existing methods can significantly re-

duce the write count of the hottest page, the hottest page still

deviates far from the average write count, and the tail wear

still exists.

Observation 1: Unbounded tail wear is the root cause
that makes the actual wear leveling result deviate from the
ideal result. When the system is running, the write distribution

to memory is very uneven. As shown in Fig 2 (a), the average

number of memory writes exceeds the 90% percentile. This

result reflects that without wear leveling, a small part of the

memory has been written frequently, while most of the other

memory has been written very few times. Fig. 2 (b), (c), and

(d) show the change of the percentile of write times over time

using random shuffle, segment swapping, and start-gap wear

leveling methods respectively. Although the maximum write

times of memory pages decrease after using these three wear

leveling methods, the results show that there is still a very

large deviation between the maximum write number and the

average write number (ideal). Furthermore, as the program

runs, this deviation increases. The proposed work deals with

the tail wear to improve wear leveling further.

B. Dilemma between Performance and Accuracy

Fig. 3: Getting accurate write access information in real time

will bring great performance overhead.

Observation 2: High frequency sampling will greatly
degrade the performance of the system. Age-based methods

generally require access information of memory pages. A

very common method is to use a hardware based sampling

method to get the memory access of programs during the

system running [5]. However, sampling will bring unavoidable

overhead to the system. To evaluate the overhead, a PEBS

based method (detailed in Section III) is employed to sample

the memory access of the system while running the gcc
from the SPEC 2017 benchmark. As shown in Fig. 3, the

performance overhead of the system increases as the sampling

frequency increases. When the sampling frequency reaches

400kHz, the performance overhead approaches 40.7%. On the

other hand, a low sampling frequency, commonly with low

accuracy, may mislead the age-based wear leveling. Previous

methods [5], [1] struggle to balance the trade-off between

lower sampling cost and more accurate access information.

This work proposes a lightweight wear enhancement method

to improve the accuracy of low-frequency sampling schemes

by interpolation, motivated by the locality principle in virtual

memory space.

III. DESIGN

A. Lamina Overview
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Fig. 4: An overview of Lamina.

The overview of the Lamina method is illustrated in Fig.

4. Lamina is implemented at the OS level and is mainly

composed of two parts: bounded tail wear leveling (BTWL)

and lightweight wear enhancement (LWE). In addition, Lam-

ina also includes a profiler and a cache estimator, which are

used for sampling memory operations and removing cache

interference respectively (detailed below). These components
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Fig. 5: Bounded tail wear leveling method.

cooperate with each other when the system is running. Profiler

is used to interact with the PMU hardware for sampling mem-

ory instructions. The cache estimator is used to evaluate the

actual write back of memory from LLC. BTWL uses the write

access information obtained from sampling to discriminate the

memory pages into different ages and manage them. LWE is

responsible for enhancing the sampled data to estimate the

write operations are lost during sampling.

The wear management process of Lamina is divided into

three parts. First, we design a profiler to monitor the memory

usage of all processes. So as to ensure the performance of

the system, the profiler interacts with the PMU hardware

at a low frequency. Because the write access to memory

occurs when the data in the cache is written back, the cache

estimator is used to evaluate the actual write back of memory.

Second, BTWL uses the write access information obtained

from sampling to discriminate the memory pages into different

ages and manage them. When BTWL finds that the write

distribution of memory pages is uneven to a certain extent,

it triggers a wear leveling process, which selects appropriate

pages to exchange the data and the indexes in the page

table. Third, LWE also obtain the sampling information from

the profiler. Its job is to enhance the sampled data. Many

write operations are lost during sampling. LWE estimates the

write operations that are not in the sampled data. The BTWL

modifies the wear leveling strategy according to the estimation

information generated from the LWE.

Profiler. This component collects the information of read

and write operations by sampling. The collected data in the

sampling includes PID, read/write type, virtual address, and

physical address. Profiler mainly relies on two technologies

related to Intel CPU hardware, namely PMU (Performance

Monitoring Unit) and PEBS (Precise Event Based Sampling)

[6]. A hardware PMC (Performance Monitoring Counter) is

initialized on the PMU. PMC is automatically accumulated

with the occurrence of specified hardware events. When

PMC overflows, the PMU triggers a performance monitoring

interrupt. With this interrupt, PEBS saves the current state of

the CPU to memory. This enables us to collect the program

execution information when the interrupt is triggered. In

order to maintain the performance of the system, we set the

frequency of this sampling as a small value in Lamina.

Cache Estimator. For the write address obtained by sam-

pling, it is also necessary to distinguish whether the write

operation is written to the cache or actually written to memory.

Page Manager

physical page

(head) (tail)…

Profiler

move to tail 
(without aging the page)

root

vma0 vma1

vma2 vma3 vma4

Text Heap Stack

Virtual
address
space

Window Size=5

PID

Virtual Address

Write Info

Page Table

virtual page estimated virtual page

Fig. 6: Lightweight wear enhancement method.

Because the data retained in the cache only writes to memory

once at write back, Lamina employed the method from Kevlar

[5] to simulate the cache by using bloom filtering, and ensures

that the probability of false positive is less than 1%.

B. Bounded Tail Wear Leveling

As shown in Fig. 5, BTWL divides the memory pages in

the system into three generations: young, medium, and old.

Each generation is managed by a page manager. Each page

manager contains a linked list and a hash table. The linked list

is responsible for managing the pages in the corresponding

generation. Each node in the linked list contains a physical

page frame and its age count. The hash table is used to handle

the mapping of physical addresses to nodes. The page manager

manage pages based on the position of pages in the linked

list, which moves old pages towards the tail and young pages

towards the head. The core idea is to dynamically promote

and demote the pages among different generations when the

system is running, so as to keep the age distances of the old

and the young generation equal to the middle generation.

There are three key parameters: age, base, and margin.

Each physical page has a corresponding age parameter saved

in the corresponding linked list node, which represents the

age of the physical page. The age parameter of each page

is set to 0 during system initialization. The base parameter

represents the lower bound of the young page manager, which

is also initialized to 0. The margin parameter represents the

age distance between the three page managers, and its value is

initialized to a small arbitrary value (set to 10 in this article).

In this way, the upper bound of tail wear is base+2×margin.

The workflow of BTWL is mainly composed of three steps.

First, BTWL periodically obtains the memory write access

data sample set processed by the cache estimator from the

profiler, which contains a series of write operations to memory

pages during this period. For each sampled write address,

BTWL finds the corresponding physical page through the hash

table and increases the age count of the physical page by 1.

Each page manager has a promotion threshold. The promotion

thresholds of young, middle, and old page managers are

1/2/3×margin+base. If the age of the physical page is less

than the promotion threshold, the page is inserted at the tail

of the list. Conversely, the page is promoted and is inserted

at the head of an older page manager.



Fig. 7: The lifetime comparison of different wear leveling methods.

Second, if the promotion process is in the old page manager,

it indicates that age of this page has reached the set bound. At

this time, a page swapping process is triggered. It retrieves old

pages and young pages from the tail of the old page manager

and the head of the young page manager, respectively. For

each pair of old and young pages, BTWL exchanges the

data in the two pages through a temporary page on DRAM

and then modifies the corresponding page table entries. For

all pages involved in the swapping process, the page in the

old page manager is inserted into the head, and the page in

the young page manager is inserted into the tail. After the

swapping process, the system set the base parameter value

to the maximum age of the young pages participating in

wear leveling. This work dynamically elevates the set bound

according to the aging status of the whole memory.

Third, when the number of pages in the young page man-

ager is less than that in the old page manager, the demotion

process will be triggered. In this process, the old page manager

and the medium page manager respectively select pages from

the head and insert them into the tail of the younger page

manager.

Through the above three steps, BTWL makes the write

count of all pages tend to the average through three page

managers with equal age margin and restricts the upper bound

of memory page write times to 3×margin+base. As a result,

the wear leveling of the pages are expected to be close to the

ideal at run time, and the lifetime of NVM can be improved.

C. Lightweight Wear Enhancement

As stated before, a low-frequency sampling scheme often

incurs low accuracy, while a high-frequency sampling scheme

often incurs high overhead. This work proposes a lightweight

wear enhancement (LWE) method to improve the accuracy by

exploiting the locality principle in virtual memory space, i.e.,

neighbour virtual pages share similar memory access behavior.

As shown in Fig. 6, the LWE method mainly consists of four

steps. First, it obtains the PID and sampled virtual addresses

corresponding to write operations from the low-frequency

sampling based profiler. Second, it finds the corresponding

virtual address space (mm struct) and page table (PGD) of

the process through PID. Third, according to the window size

parameter, it finds the virtual pages neighbouring the sampled

virtual page. Fourth, for each neighbor virtual page, it finds

the corresponding physical page by looking up the page table

and transferring this physical page to the tail of the list so as

to reduce further reuse. The LWE chooses not to promote this

page in purpose of tolerating the accuracy of interpolation.

Window size is a very important parameter, which will

affect the accuracy of estimation and the efficiency of wear

leveling. Too large window size will cause many memory

pages without write access to participate in the wear leveling

swapping operations, resulting in additional unnecessary page

copies. On the other hand, if the window size is set too small,

a lot of page write information would be lost, and many

pages that have been written many times will be regarded as

young pages mistakenly. In Section IV-D, we will analyze the

influence of window size parameters on estimation accuracy

through experiments, and explain how to select an appropriate

window size value.

IV. EVALUATION

A. Experimental Setup

In this section, we conducted extensive and representative

experiments to evaluate the performance of Lamina. For exper-

imental evaluation, our method and three previous represen-

tative methods, including Random Shuffle [5], [13], Segment

Swapping [19], and Start-Gap [10], [12], are implemented at

the OS level and evaluated.

The segment size of Segment Swapping is chosen as 10% of

all written pages. The memory line size of Start-Gap is chosen

as 64 pages (256KB). The Random Shuffle method shuffles

the physical pages of all processes randomly. The period of

these three wear leveling implementations are set to 104, 103,

and 105 write instructions respectively.

These wear leveling methods are evaluated with the SPEC

2017 benchmark [2]. The test suites are run on a machine with

an Intel Core i7-8750H processor and 32 GB DDR4 memory,

with Linux kernel version 5.4.25. The DRAM memory in this

machine is used as a simulation of NVM. The memory ac-

cesses from a very high frequency (1k× higher than Lamina)

PEBS based sampling is used as the ground truth.

B. Lifetime Improvement

Fig. 7 shows the lifetime results of different wear leveling

methods. We compare the maximum page write count of each

wear leveling method with baseline (without wear leveling).

Thus, we obtain the normalized lifetime results of these

different wear leveling methods. According to this result,



Fig. 8: The write distribution (using cumulative distribution

function) comparison of different wear leveling methods.

Fig. 9: The percentile of the write count of all pages as the

program runs.

we can find that Lamina can improve the lifetime of NVM

significantly compared with other methods. Compared to the

baseline, Lamina can increase the lifetime of NVM up to 97.3

times for lbm, and 81.4 times on average. The experimental

results also show that in most cases, using LWE to enhance

the sampling data can improve the effect of Lamina. The

exception is nab, for which the accuracy of the locality based

interpolation slightly hurt the wear leveling.

C. Analysis of BTWL

Fig. 8 shows the distribution of memory page write times of

gcc suite running for one minute under different wear leveling

methods. From the result, we can see that in the case of

Lamina, the number of tail writes of pages is less than that of

other wear leveling strategies.

Lamina keeps approaching the average number of writes of

all pages and limits the maximum number of writes. Since

the additional overhead of wear leveling is mainly due to

page swapping, we mainly consider the impact of additional

memory writes and sampling process on system performance.

Fig. 9 shows the percentile of the memory page write count

during one minute of gcc running when using Lamina for

wear leveling. It is found that Lamina constantly approaches

the average number of writes of all pages, and the maximum

number of writes is well bounded. The results shown in Fig.

2 are the results of other wear leveling methods under the

same conditions. Comparing these two figures, it is clearly

shown that Lamina greatly eliminates the tail wear problem

over other methods. It also explains why Lamina performs the

best at improving the lifetime of NVM among all evaluated

wear leveling methods.

D. Analysis of LWE

The LWE method can accurately interpolate the lost write

information of sampling. Fig. 10 shows the accuracy of the

write operations on the raw data obtained at a sampling

frequency of 50000Hz, and the improved accuracy of LWE

under different window size. Generally, the larger of the

Fig. 10: The accuracy of LWE under different window size.

window size, the higher of the accuracy. If the window size

is too large, the accuracy will converge. This also explains

the increase of NVM lifetime after using LWE, as illustrated

in Fig. 7. We generally set the window size to 7 in the

experiment, because the accuracy of will converge over this

window size.

E. Overhead Discussion

The performance overhead of wear leveling is mainly page

swapping and sampling, so we mainly consider the impact of

the additional memory writes due to these two factors. The

performance overhead due to wear leveling is shown in Fig.

11. The experimental results show that compared with other

wear leveling algorithms, Lamina incurs the least overhead.

Since in Lamina the most appropriate memory pages are

selected to achieve better wear leveling, and thus the number

of page swapping is minimized. In addition, Lamina also uses

a low-frequency sampling method which incurs less overhead.

We can also observe that in all cases, the performance will

be slightly reduced after using LWE. This is because LWE

provides more memory write estimates, so more candidate

pages will be selected when performing wear leveling.

V. RELATED WORK

System design of Lamina has draw lesson from many

previous wear leveling works [5], [4], [19], [9], [13], [12],

[10], [16], [18], [3]. Some of these methods are age-based

[9], [3], [19], which guides the wear leveling strategy through

age counting. The method based on randomization [13], [12],

[5], [10] is often easier to implement, which is used in a

large number of system design. These methods can greatly

prolong the service life of nonvolatile memory. However, with

the running of the system, the imbalance degree of write

distribution in NVM would constantly increase. There is a

great gap between these wear leveling results and the optimal

case. This paper bridged this gap to solve problems existing

in the previous methods.

Analogy wear management methods have been proposed in

the field of SSDs. For example, Rejuvenator [11] uses a fine-

grained management strategy to divide blocks into different

segments according to their age, so as to identify hot data

and put them in blocks with less wear. Li et al. [8] proposes

a data heat identification and aggregation migration method

to balance the erasure times between SSD blocks. PER-WL

[14] performs swapping between data blocks according to the

statistical results of the program error rate to improve the

efficiency of wear leveling. Unfortunately, these studies ignore

many completely different characteristics of NVM in hardware

and software levels, including access mode, system-related

memory management, program performance requirement, etc.



Fig. 11: The performance overhead of Lamina is very small. This is because it finds the most suitable pages for wear leveling

and uses a low overhead sampling method. Compared with the comparative wear leveling methods, Lamina only introduces

a small number of write overheads caused due to page swapping.

VI. CONCLUSION

In this paper, we present Lamina, which is an efficient

operating system level memory wear management scheme.

First, a bounded tail wear leveling algorithm is designed to

make the average number of writes in each page close to the

global average so as to solve the tail wear problem. Second, a

lightweight wear enhancement method is proposed to estimate

memory access information based on the locality principle in

virtual memory, which can improve the sampling accuracy

with low overhead. Our experimental results show that Lamina

can greatly extend the lifetime of NVM at a very low cost.
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