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Abstract
Bug localization, which refers to finding buggy files for a given bug report, is tedious and
time-consuming for practical projects with tens of millions of lines of code. Recently, many
information retrieval (IR)-based bug localization (IRBL) approaches have been proposed
to formulate this problem as a search problem. Despite the excellent performance claimed
in the literature, there is hardly any approach adopted in the industrial community to the
best of our knowledge. The challenge of adapting IRBL to industrial projects is that the
projects have different characteristics compared to open-source projects used in the litera-
tures, which have not been taken into consideration in previous studies. In this paper, we
re-implement six state-of-the-art IRBL techniques and evaluate their effectiveness on 10
Huawei projects consisting of 161,967 source code files and 24,437 bug reports in total.
Localizing bugs in these projects faces several challenges, including the software product
line, the bilingual issue, and the quality of bug reports, etc. We conduct comprehensive
experiments to reveal how these factors affect IRBL effectiveness, and modify the data set
to test whether some factors could be overcome, if additional information or hints are given.
Based on the insights found in our work, we suggest potential improvements on IRBL tech-
niques. This study is also expected to provide empirical evidences for other software tasks
which face the same fundamental challenges.

Keywords Bug localization · Empirical study · Industrial projects

Communicated by: Aldeida Aleti, Annibale Panichella, and Shin Yoo

This article belongs to the Topical Collection: Advances in Search-Based Software Engineering (SSBSE)

The authors have no relevant financial or non-financial interests to disclose.

� Qingan Li
qingan@whu.edu.cn

� Mengting Yuan
ymt@whu.edu.com

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10082-6&domain=pdf
http://orcid.org/0000-0001-8758-8668
mailto: ymt@whu.edu.com


   47 Page 2 of 31 Empir Software Eng           (2022) 27:47 

1 Introduction

Modern software projects consist of a large scale of source code files, with many developers
getting involved. When a bug report is issued, it is hard for developers to find corresponding
buggy files. In order to reduce the manual effort and promote the efficiency in debugging,
various bug localization techniques have been proposed to automate the process of finding
buggy files for given bug reports (Wong et al. 2016; Lee et al. 2018). However, as bug local-
ization involves both natural languages and programming languages, it is still a challenging
research topic due to the huge semantic gap between natural languages and programming
languages.

A bug localization problem can be treated as a classification problem or a ranking problem.
In the former, historical bug reports and source file revisions are used to train a classification
function C. For a given bug report r and a source file s, C(r, s) indicates whether s is corres-
pondent to r . Some neural-network based approaches (Xuan et al. 2016; Xuan and Li 2017)
have been proposed, aiming at training effective classifiers. However, the goal of the training
process is to minimize a loss function, which is not obligated to quantify the relevance between
bug reports and source files. In addition, training the classification suffers from the scalability
problem, as its space complexity is in the order of the product of the number of bug reports
and the number of source files. In the latter, information retrieval (IR) models are applied to
rank the source code files based on their relevance to the bug report (Gay et al. 2009; Lukins
et al. 2010; Nguyen et al. 2011; Zhou et al. 2012), and highly ranked files are supposed to
be most likely to contain the buggy code. In this work, we focus on the latter approach, as
it is well aligned to large-scale projects and suitable for the recommendation scenario.

Despite that IR-based bug localization (IRBL) has drawn great interest and attention
from the academia, with numerous approaches claiming excellent performance in the litera-
ture, there is hardly any approach adopted in the developer community yet (Lee et al. 2018).
Actually, the benchmarks used in research are much different from industrial projects. Most
recent researchers conduct their experiments on the data set firstly proposed in Zhou et al.
(2012), thus overfitting scenarios potentially exist. Although Lee et al. (2018) apply the
existing IRBL techniques to dozens of new projects and obtain a comparable performance,
most projects are composed of less than 1000 files, which is much smaller than indus-
trial projects. Moreover, all the studies only explore the effectiveness on the open-source
projects, whereas the large-scale industrial projects contain unique characteristics that are
unsuitable for IRBL techniques.

In order to advance the application of IRBL techniques in real-world scenarios, we col-
lect 10 closed-source Huawei projects and analyze the challenges faced in leveraging IRBL
techniques. More than 160,000 source code files and 24,000 bug reports are involved in
total. Compared to the open-source projects, these industrial projects in the data set have
the following characteristics.

1) Software product line (SPL): Software product line (Paul and Linda 2002) is a common
solution in project development of enterprises, where multiple products are manufactured
from a single project by composing different features crafted in the project. Existing IRBL
techniques are often misled by the wrong clues caused by the feature composition.

2) Mixture of multiple natural languages: Multilingualism is common in non-US projects,
where the bug reports and code annotations tend to accommodate the native language
and English. And it is difficult to establish semantic relations between sentences or
phases written in different languages.

3) Quality of bug reports: We find that bug reports in industrial projects are of poorer
quality than those in open-source projects, which is mainly caused by the following two
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factors: (a) Multiple perspectives of bug reports—bug reports in industrial projects are
committed by different stakeholders (e.g. end users, beta testers, etc) from different per-
spectives, which usually lack rich structured information (e.g. stack traces and program
entity names) that hint at the buggy file. (b) Noises in bug reports—noisy bug reports
frequently occur in real-world projects, most of which concern other software activities,
such as optimization and refactoring activities, instead of corrective maintenance.

Furthermore, we re-implement six state-of-the-art IRBL techniques (Zhou et al. 2012;
Wen et al. 2016; Wong et al. 2014; Saha et al. 2013; Wang and Lo 2014; Ye et al. 2014) and
perform a comprehensive evaluation of these techniques on the collected Huawei projects
by comparing with the performance on the open-source projects used in the literature. We
also investigate whether the identified issues could be overcome by modifying the data set
or providing additional hints. We report the following insights:

1) Despite the multiple industrial issues, IRBL techniques still work well on small-scale
projects. However, the effectiveness on large-scale projects is comparatively lower and
limited.

2) With only large-scale projects considered, the performance is stable across the projects,
and the differences in performance among the state-of-the-art techniques become less
apparent.

3) Many previous research studies (Zhou et al. 2012; Saha et al. 2013; Wong et al. 2014)
report that the lexical similarity between bug reports and source code files is the major
factor of IRBL. Due to the multiple perspectives and multilingualism problem, the lexical
similarity is less effective in industrial projects. Instead, collaborative filtering mainly
contributes to the effectiveness, thanks to the abundance of historical bug reports.

4) The performance of IRBL techniques on industrial projects can be further improved by
eliminating noisy bug reports and leveraging SPL analysis.

Overall, the contributions of this paper are highlighted as follows.

– For the first time, we evaluate the effectiveness of IRBL techniques on large-scale,
industrial projects. Six state-of-the-art techniques are re-implemented and the perfor-
mance on open-source projects are used for comparison. During the evaluation, we find
new insights that have never been discovered in open-source projects.

– We reveal major issues which prevent state-of-arts IRBL techniques from being
applied to industrial projects. We also investigate the impacts of these issues on IRBL
performance.

– With empirical evidences, we propose possible directions for improving current IRBL
approaches. We also conduct preliminary experiments to validate parts of the directions.

As information retrieval techniques have been widely used in many other research fields
in software engineering (e.g. code search Gu et al. 2018, code summarization Wan et al.
2018, traceability link recovery Mills and Haiduc 2017, etc.), and most of them face the
same fundamental problems (e.g. the semantics gap problems, the SPL problem, etc), our
empirical study could provide benefits for those researches and advances their applications
in practical projects.

The remainder of this paper is organized as follows. Section 2 introduces the background
of IRBL techniques and the motivation of this paper. Section 3 presents the design of our
study. The analysis result is elaborated subsequently in Section 4. Section 5 discusses the
potential improvements for IRBL techniques and Section 6 discusses the threats to validity.
After surveying the related work in Section 7, we conclude our work in Section 8.
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2 Background &Motivation

2.1 IR-Based Bug Localization

Information retrieval (IR) (Manning et al. 2010) is the activity of obtaining relevant infor-
mation from a collection of resources (usually documents) that satisfies an information need
(usually a query expressed as a set of key words). In the context of IR-based bug localiza-
tion (IRBL), each bug report is construed as a query, while the set of source code files are
considered as the document collection. The basic intuition is that the file most relevant to a
bug report appears to be the most suspicious one that should be fixed to eliminate the bug.

Therefore, the primary task of IRBL technique is to design a model to measure the rele-
vance between bug reports and source code files. A tendency observed in the recent work on
IRBL is to combine more performance enhancement features to achieve a higher localiza-
tion accuracy, where the features draw heavily on the software engineering domain know-
ledge. The following features have been mostly considered by state-of-the-art IRBL tools:

1) Lexical similarity feature: The lexical similarity between bug reports and source code
files has been regarded as the crucial feature in IRBL techniques, owning to that bug
reports usually share common words with their relevant defective code files. To com-
pute the similarity, both the bug report and the source code are treated as plain text, and
some text similarity models are applied, such as Vector Space Model (VSM) (Rao and
Kak 2011), Probabilistic Topic Model (Lukins et al. 2010), and so forth. In addition,
various refinements based on different heuristics have been proposed to further improve
the effectiveness of this feature, some of which will be illustrated in Section 3.2.

2) Collaborative filtering feature: Collaborative filtering is a commonly used technique
in recommender systems (Ekstrand et al. 2011), which refers to generating recommen-
dations about the interests of a user by collecting preferences information from many
other users. It has also been proven to be useful in bug localization given that similar
bugs tend to fix similar files (Zhou et al. 2012). For a specific bug report, the collabo-
rative filtering score of a source code file is calculated based on the textual similarities
of their relevant historical bug reports and the number of files that are modified to fix
each bug report.

3) Stack-trace information feature: Bug reports sometimes contain stack-trace informa-
tion, which may provide direct clues to the buggy files (Wong et al. 2014). As revealed
in the previous study by Schroter et al. (2010), the higher up the stack frames appear
in stack-trace, the more likely it is to be bug-prone. Therefore, a separate stack-trace
information score calculated based on the stack frames order is supposed to be helpful
for improving the performance of bug localization.

4) Version history feature: It is suggested that the change history of source code files
provides vital information for locating bugs. Generally the source files which were
modified recently or frequently are more suspicious regarding the new-coming bugs
(Kim et al. 2007; Ye et al. 2014). Based on this assumption, some features are inferred
from the version history and integrated with other features.

2.2 Motivation

IRBL research has drawn great attention in academia and constantly produced new
approaches that claim a higher performance over the state-of-the-art. However, some lim-
itations lie in the performance assessments. Firstly, as demonstrated by Lee et al. (2018),



Empir Software Eng           (2022) 27:47 Page 5 of 31   47 

most studies perform the evaluation on the same old and limited projects, which may lead
to potential overfitting scenarios. Despite that Lee et al. explored an evaluation of exist-
ing techniques on dozens of new projects and achieved a comparable performance, most
projects seems to be small-scale (less than 1000 source code files in a project). Akbar and
Kak (2020) divided IRBL tools into three generations and evaluate these tools on some
large-scale projects, but they focused on the comparison between different generations
instead of effectiveness evaluation and the amount of bug reports they used is much small
relative to the projects scales. Therefore a thorough evaluation on IRBL effectiveness for
large-scale projects is still needed.

On the other hand, many existing approaches (Zhou et al. 2012; Saha et al. 2013; Wong
et al. 2014; Wen et al. 2016; Saha et al. 2014; Lee et al. 2018) raise the threat to validity
in their work that all the data sets used in research are collected from open-source projects,
while the industrial data sets may have some different natures. AlthoughMurali et al. (2020)
explored the application of IRBL methods at a large industrial setting of Facebook, the bug
reports in their setting are all automatically generated by crash or regression systems, which
are completely different from the manually submitted ones. Hence, whether the existing
IRBL techniques are generalizable to industrial projects still needs to be studied. Actu-
ally, we have found some specific industrial issues that may have adverse effects on the
performance:

1) Software product line: Software product line (SPL) is a common solution in project
development of enterprises, which refers to a set of products aggregate sharing a com-
mon, managed set of features and developed in a common project (Paul and Linda
2002). An SPL project usually involves some similar software features. For example, a
network system may manage feature GPON and feature EPON simultaneously, each of
which is a kind of optical communication technique. Source code distributed in similar
features tends to be highly similar as well, which would interfere with the effectiveness
of lexical similarity in IRBL techniques. In addition, similar bug reports may refer to
bugs in different features, which would interfere with the effectiveness of collabora-
tive filtering as well. For example, Fig. 1 provides two extremely similar bug reports
in an SPL project. The first one reported a failure whose root cause was found in the

Bug Report 1
Summary: Boards failed.

Description: After activating the SPH patch and resetting the 

boards, some boards were not normal.

Modified feature: GPON Board.

Bug Report 2
Summary: Board failed to register.

Description: 1) Load the R47VSPH patch. 2) Reset 10G 

boards. The board was unable to register.

Modified feature: EPON Board.

Fig. 1 Two Similar bug reports in Huawei SPL projects (The summaries and descriptions are originally
bilingual in English and non-English, which are translated into English only. So do the examples in Figs. 2
and 3)
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code of feature “GPON Board”, while the root cause of the second one was located in
the code of feature “EPON Board”. As a result, SPL brings challenges for IRBL tech-
niques that rely heavily on similarity models. However, for most open-source projects
with the SPL strategy, it is not an issue. The reason is that each feature is treated as an
self-contained project, and the corresponding bug reports are committed to the feature
project directly. For example, the project Eclipse has many features (e.g. PDE, JDT,
etc.), each of which has its own bug report repository. In this case, previous research
has not taken the SPL SPL issue into consideration. But for industrial SPL projects,
this issue may lead to significant degradation of IRBL performance.

2) Mixture of multiple natural languages: In non-English speaking countries, develop-
ers tend to write code annotations in their native language for readability, while the
program entities are still English words. Bug reports are usually bilingual as well. Con-
sidering that existing IRBL techniques (Zhou et al. 2012; Saha et al. 2013;Wang and Lo
2014) recommend potential buggy files mainly based on the lexical similarity between
bug reports and source code files which ignores the semantic relations, the mixture
of multiple natural languages will bring new challenges to IRBL research. There are
multi-languages bug reports in open-source projects, and Xia et al. (2014) proposed
CrosLocator which translates non-English textual descriptions of a bug reports into
English and then applies a bug localization technique. But this approach is much inef-
fective when code files and bug reports both contain non-English text because if we
translate all these text we would probably lose important information, and imprecise
translation would make it more difficult to match the bug reports with related code
files. The bilingual issue is also similar to the vocabulary mismatch problem in human-
system communications (Furnas et al. 1987), where the search queries frequently
mismatch a majority of the relevant documents. Query reformulation approaches (Zhao
and Callan 2012; Rahman and Roy 2018b) are used to address this problem by expand-
ing queries to improve the probability of finding relevant document. But all the existing
methods are proposed in the monolingual settings and their effectiveness on bilingual
issue still needs to be studied.

3) Quality of bug reports: The quality of bug reports in industrial projects is worse than
that in open-source projects. According to the investigation of this study, we conclude
the major factors of the quality issue as follows.

• Multiple perspectives of bug reports: Bug reports issued by submitters of different
identities (e.g. end users, beta testers, etc.) are committed from different perspec-
tives, as these stakeholders have different backgrounds in the aspect of knowledge
related to the projects. For open-source projects, many bug reports are committed
by experienced developers, who tend to describe bugs on source code level. Hence
these bug reports generally contain rich structured information, such as stack traces
and program entity names explicitly pointing to the bugs, which are proved to be
useful in bug localization (Kim et al. 2011b; Zimmermann et al. 2010; Bettenburg
et al. 2007). As the statistics gathered by Wang et al. (2015) from 10,000 SWT
bug reports indicate: nearly one half contains the names of program entities. How-
ever, for industrial projects, most submitters are ignorant about the source code and
describe bugs by describing the defective behaviors without providing code-related
information, such as the example shown in Fig. 2. To make things worse, for many
end users who barely have knowledge background of computers, they are still per-
mitted to submit bug reports. Recent studies (Rahman and Roy 2018a; Wang et al.
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A Bug Report from End User
Summary: Exception of management interface.

Description: Pictures on the management interface are

displayed incompletely.

Fig. 2 A bug report submitted by an end user

2015) suggest that IRBL techniques do not perform well for the bug reports lack-
ing rich structured information. Therefore, multiple perspectives of bug reports in
industrial projects may impact the performance.

• Noises in bug reports: Earlier studies demonstrated that bug databases contain a
large amount of noises (Bird et al. 2009; Herzig et al. 2013). Some bugs might be
falsely linked with the modified source code files during the extraction process.
And more are not really bugs, as they are concern with other software activities
(e.g. perfective and adaptive maintenance, refactoring/restructuring activities, etc.),
instead of corrective maintenance (Antoniol et al. 2008). For example, two noisy
bug reports are given in Fig. 3. The first proposes the requirement of code opti-
mization, and the second aims at dealing with the warnings raised by a static code
analysis tool. At Huawei, most of these noisy bug reports are submitted by devel-
opers and are usually short and uninformative. There is little logical connection
between the reports and the corresponding modified source files. In practical use
of IRBL tools, we can locate bugs only for non-noisy bug reports. But in research,
we can only collect the ground truth data from the historical bug reports, which did
not have records about which type of issues the reports describe. Including noisy
reports will negatively impact the performance evaluation for IRBL techniques.

In light of the limitations discussed above, we motivate this work to complement the
performance evaluation of the current research and advance the practical application of
IRBL techniques. For the first time, we explore an empirical evaluation of IRBL tech-
niques on large-scale, industrial projects and investigate the impacts of the industrial
issues on the performance of these techniques.

Noisy Bug Report 1
Summary: Code optimization for UDAP.

Description: Optimize the code for BRA and status inquiry in 

VAM module by reducing cyclomatic complexity.

Noisy Bug Report 2
Summary: fix lint warnings

Description: Several warnings still exist when inspecting the 

P300 library, needing to be fixed.

Fig. 3 Two noisy bug reports in Huawei projects
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3 Study Design

3.1 Research Questions

Our empirical study focuses on the following research questions:

RQ1: How effective are IRBL techniques for industrial projects?

To answer this research question, we apply the IRBL techniques on the collected
Huawei projects, and assess the effectiveness by comparing with that on commonly-used
open-source projects.

RQ2: How do industrial issues affect the effectiveness of IRBL techniques on industrial
projects?

We point out several industrial issues that prevent IRBL techniques from being well
adapted to industrial projects. In this research question, we investigate and analyze the
impacts of these issues on the effectiveness.

RQ3: Can these issues be overcome?

Based on the answer of RQ2, we study whether these industrial issues can be overcome.
We conduct preliminary experiments to validate some of the ideas.

3.2 IRBL Techniques

A large number of IRBL techniques have been proposed in the literature. In this study,
we consider six state-of-the-art, oft-cited techniques, as enumerated in Table 1. All these
techniques, except LearningToRank, are re-implemented by Lee et al. (2018) in their
reproducibility study. Hence, our experiments are well aligned to theirs for comparison.

1) BugLocator firstly combines lexical similarity feature and collaborative filtering fea-
ture. Additionally, it optimizes the classic VSM model by weighting the probability
scores with file size, as findings show that larger files are more likely to contain bugs
(Zhang 2009).

2) BLUiR optimizes lexical similarity feature by adopting structured information retrieval,
where the code entities (class names, method names, variables names and comments)
are extracted and matched with summaries and descriptions of bug reports separately.

3) AmaLgam integrates a version history feature into the BLUiR model to further improve
the performance, based on the assumption that source files responsible for a recent bug
are likely to still contain bugs.

Table 1 The studied IRBL techniques

Technique Venue Year

BugLocator (Zhou et al. 2012) Intl. Conf. on Software Engineering 2012

BLUiR (Saha et al. 2013) Intl. Conf. on Automated Software Engineering 2013

AmaLgam (Wang and Lo 2014) Intl. Conf. on Program Comprehension 2014

BRTracer (Wong et al. 2014) Intl. Conf. on Software Maintenance and Evolution 2014

LearningToRank (Ye et al. 2014) Symp. on the Foundations of Software Engineering 2014

Locus (Wen et al. 2016) Intl. Conf. on Automated Software Engineering 2016
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4) BRTracer introduces the stack-trace feature. Also, it divides source code files into small
segments to improve the effectiveness of lexical similarity feature given that bugs are
generally localized in a small portion of the code.

5) LearningToRank extracts six features based on domain knowledge, including the lex-
ical similarity, the collaborative filtering score, the bug-fixing recency score, the
bug-fixing frequency score and so on. Then, a learning-to-rank approach is utilized to
train the features’ weights.

6) Locus leverages the software changes to enable more accurate and fine-grained bug
localization. Specifically, it extracts the change logs and change hunks from the commit
information and use them as an alternative of segments of source code files.

Note that Lee et al. (2018) also study the performance of another IRBL tool named
BLIA (Youm et al. 2015), which can be perceived as AmaLgam integrated with the stack-
trace information feature. However, almost no bug reports data set in our industrial data
set contains stack-trace information, since the projects are all written in C and C++, both
of which do not have native support for stack traces, and the released applications have all
stripped the debug information. Therefore we do not consider this technique in this study.
Instead, we investigate the effectiveness of LearningToRank due to its uniqueness in the
way of determining features’ weights. Besides, although Lee et al. (2018) have made their
re-implementations available, only English-only Java projects are targeted. Considering that
the industrial projects used in our study are all bilingual and written in C and C++, we
re-implement these tools again and adapt them to our data set.

3.3 EvaluationMetrics

To evaluate the effectiveness of the existing IRBL techniques for industrial projects, we
adopt the following three metrics which have been widely used in the literature.

1) Top N Rank (Top@N): This metric indicates the percentage of bug reports for which at
least one corresponding buggy file is included in the top N (i.e. 1, 5, 10) results recom-
mended by the IRBL tools. It is the most intuitive metric about which practitioners are
most concerned, as a survey conducted by Kochhar et al. (2016) shows that most prac-
titioners would accept the IRBL tool as effective when the position of the root cause is
within the top 5.

2) Mean Average Precision (MAP): MAP considers whether all the corresponding buggy
files tend to get highly ranked, thus it is favored in scenarios where users go deep in
a ranked list to find more relevant results. It is calculated by taking the mean value of
Average Precision (AP) scores for each bug report. The AP of a single bug report is
defined as:

AP =
N∑

i=1

P(i) · pos(i)

# of positive instances
(1)

where N is the number of ranked files produced by IRBL tool, i is the rank. pos(i)

indicates whether the file at rank i is a buggy file. P(i) is the precision at the given
cut-off rank i and is calculated as:

P(i) = # of positive instances in top i

i
(2)

3) Mean Reciprocal Rank (MRR): MRR emphasizes early precision and cares about the
single highest-ranked relevant item. It is calculated by averaging the reciprocal rank
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scores across all bug reports:

MRR = 1

M

M∑

i=1

1

f -ranki

(3)

where M is the number of bug reports and f -ranki represents the position of first
buggy file in the ranked list for the i-th bug report.

3.4 Study Objects

This study is intended to explore the effectiveness of the existing IRBL techniques for
industrial, large-scale projects. For the sake of comparison, we also intentionally select
two small-scale projects. Table 2 lists the Huawei projects used in our empirical evalua-
tion, ordered by the number of source code files. 161,967 source code files and 24,437 bug
reports are involved in total. All these projects are written in C and C++ and the bug reports
are well-managed with Huawei internal Defect Tracking System.

The steps of collecting the dataset of Huawei projects are similar to those of collecting
open-source dataset (Zhou et al. 2012). We have to establish the links between bug reports
and related buggy source code files since no such information was recorded. First, we col-
lect the bug reports of fixed bugs from Defect Tracking system. Then we scan through the
change log of the source code repository (such as SVN and GIT) for the bug IDs in given
formats (e.g. “fix bug DTS001”, etc.). The modified source code in commits for bug fixes
is regarded as the related buggy file.

The first two projects are small-scale, in which less than 500 files are contained. And the
remainders are much larger, which all suffer from the strenuous and time-consuming manual
bug localization and are in urgent need of assistant tool to automate this process. Despite
that most of these projects are system softwares of network equipments, they comprise low-
level communication, network operating system, user interface, encryption and decryption,
and so on, thus could cover a variety of scenarios of software application.

Table 2 also lists the number of noisy bug reports in each project. The noisy bug reports
are detected by a simple heuristic rule, which will be introduced in Section 4.3. According to
the statistics, a large proportion of bug reports are classified as noisy ones. The last column
in Table 2 indicates the number of products involved in each project. Those projects that
manage multiple products adopt the SPL strategy.

We also consider some open-source Java projects commonly used in the literature as
listed in Table 3 for comparison. Note that some recent studies (Wen et al. 2016; Lee et al.
2018) used slightly different data sets from that collected by Zhou et al. (2012). Two sub-
projects from Eclipse, namely PDE and JDT, substitute for Eclipse because the repository
of Eclipse was separately managed for each sub-project afterwards. In this study, we focus
on JDT and PDE instead of Eclipse as well.

For illustrating the impact of the industrial issues quantitatively, we present the compar-
ison of vocabulary overlaps between bug reports and their related buggy files for industrial
and open-source projects used in this study, as shown in Table 4. The second and third
columns list the average number of unique terms after preprocessing in bug reports and
source code files. Industrial bug reports are manifestly poorer in quality as much fewer terms
are contained. The fourth to sixth columns are the percentages of bug reports that share dif-
ferent ranges of common terms with their related buggy files (For one bug report, We only
consider the maximum number of terms shared with each buggy file, since some other files
fixed for the bug may be incidentally modified and have little relationship with the bug).
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Table 3 The open-source Java projects

Project Description Period # Source files # Bug reports

ZXing A barcode image processing Android library 03/10-09/10 391 20

SWT An open source widget toolkit for Java 10/04-04/10 484 98

PDE Plug-in Development Environment for Eclipse 08/10-04/15 5,273 60

AspectJ An aspect-oriented extension to Java 12/02-05/10 6,485 286

JDT A suite of Java development tools for Eclipse 07/14-04/15 6,842 94

Around 10 to 15% bug reports in most industrial projects do not share any terms with their
buggy file, and only a little portion of bug reports share more than 10 terms. On average,
about 4.5 to 6.5 terms are shared between the industrial bug reports and their buggy files as
shown in the last column, while the number for open-source projects is twice or even three
times as much. In summary, the lexical similarities between bug reports and buggy files in
industrial projects are much lower than those in open-source projects. The industrial issues
account for this, as poor-quality bug reports contain very few code-related terms and source
code that are not well annotated share few non-English terms with bug reports.

3.5 Model Adaptation

Due to some different characteristics of industrial projects, we make the following adapta-
tions when applying the existing IRBL techniques.

Table 4 Vocabulary overlap between bug reports and related buggy files

Projects Avg. size of Avg. size of BRs sharing up to {} with one buggy file Avg. num of

bug reports code files 0 terms 1–10 terms > 10 terms shared terms

Industrial projects

NTA 33.5 87.0 5.3% 71.4% 23.2% 7.3

ESP 26.4 69.3 6.9% 75.0% 18.0% 6.7

DSLAM 16.9 72.6 12.1% 79.5% 8.3% 4.9

OLT 17.8 74.8 9.0% 80.9% 10.1% 5.4

IAS 15.1 63.3 18.3% 75.0% 6.7% 4.5

BSP 30.2 45.9 13.7% 72.0% 14.3% 6.6

ONT 21.5 51.5 10.9% 77.6% 11.5% 5.9

ANP 23.4 53.1 12.1% 79.9% 8.0% 6.1

UTS 19.2 63.1 14.6% 80.5% 4.9% 4.3

WDM 21.6 41.0 8.3% 85.2% 6.4% 5.4

Open-source projects

ZXing 72.7 57.3 0% 60% 40.0% 12.3

SWT 38.9 90.9 0% 51.0% 49.0% 12.2

PDE 45.4 59.4 1.7% 50.0% 48.3% 11.2

AspectJ 63.4 42.6 0% 28.3% 71.7% 16.9

JDT 73.2 59.3 1.1% 27.6% 71.3% 17.5
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1) Adaptation for Bilingualism: The text similarity models used in the IRBL approaches
generally require bug reports and source code to be represented by their constituent
pre-processed tokens, thus tokenization is always performed for the text. For English,
tokenization usually involves white space splitting, stopwords removal, stemming, etc.
However, some non-English languages are written without spaces or other delimiters
between the words, such as Chinese and Japanese. Tokenizing this kind of language
needs an additional pre-processing step which is called word segmentation. In this
study, all the industrial projects are bilingual. Specifically, the contents of bug reports
are almost entirely Chinese (more than 80% Chinese tokens), with few words related
to the product or module information in English. The code annotations are the same.
We segment these sentences using Stanford Word Segmenter1—a CRF-based (Chang
et al. 2008) segmentation tool developed by Stanford NLP Group.

2) Adaptation for C/C++ projects: Some IRBL techniques utilize the code construct
information to improve effectiveness, such as BLUiR and AmaLgam. However, the
available implementations of these tools are only applicable to Java projects. Given
that all the industrial projects used in our study are written in C and C++, we adopt
Eclipse C/C++ Development Tools (CDT) to build the abstract syntax tree (AST) of
each source code file and extract the required program constructs as stated (Saha et al.
2013), including class names, method names, variable names and comments. Specially,
since C is not object-oriented and has no class construct, we consider C file names as
the substitution of class names, like Saha et al. (2014) do in their study.

4 Results & Analysis

Our experiments investigate and answer three research questions discussed in Section 3.1.

4.1 RQ1: Performance on Industrial Projects

To evaluate how effective IRBL techniques are for the industrial projects, we benchmark
the performance against that on open-source Java projects. Note that all the studied tech-
niques involve several parameters, which mainly are the weights of features and have a
significant influence on the performance of bug localization. Except for LearningToRank,
all the techniques tune the parameters using the whole dataset. For open-source projects,
we directly adopt the optimal parameters published in the literature. For industrial projects,
we retune these parameters to enable a better result because the different characteristics
of projects may lead to different suitable parameters. Specifically, we focus on tuning the
following parameters: (1) the weighting factor α for collaborative filtering feature score in
BugLocator, BLUiR and BRTracer. (2) the weighting factor β for historical feature score
in AmaLgam. Empirically, these approaches achieve the best performance on industrial
projects when α varies between 0.5 ∼ 0.7 and β varies between 0.1 ∼ 0.3. For Learning-
ToRank, the features’ weights are trained using Ranking SVM (Joachims et al. 2017). We
evaluate this tool with cross-validation, similar to that in Ye et al. (2014). The bug reports
are first split into 10 folds. Then we repeatedly select different 9 folds of the bug reports for
training the parameters, and validate the effectiveness on the remaining fold. All the results
are aggregated lastly to form the final results.

1https://nlp.stanford.edu/software/segmenter.shtml

https://nlp.stanford.edu/software/segmenter.shtml
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Tables 5 and 6 respectively show the results of studied IRBL techniques for open-source
and industrial projects, in terms of Top@1, Top@5, Top@10, MAP and MRR. The last
group in each table presents the aggregated results of each technique on all projects, which
are calculated by assuming all bug reports are in a single project. The highest metric values
for each project across the six techniques are highlighted in bold. Note that our results for

Table 5 The performance on open-source Java projects

Projects IRBL tech. Top@1 Top@5 Top@10 MAP MRR

ZXing BugLocator 0.2000 0.6500 0.7500 0.3306 0.3837

BLUiR 0.5000 0.6500 0.8000 0.4996 0.5903

AmaLgam 0.5500 0.6500 0.7500 0.5234 0.6143

BRTracer 0.3000 0.5500 0.7500 0.3937 0.4219

LearnToRank 0.2277 0.5025 0.6683 0.2331 0.3646

Locus 0.4500 0.7000 0.8000 0.4609 0.5551

SWT BugLocator 0.3571 0.6939 0.7959 0.4458 0.5016

BLUiR 0.5408 0.7551 0.8367 0.5684 0.6480

AmaLgam 0.5306 0.7449 0.8367 0.5613 0.6341

BRTracer 0.4694 0.7857 0.8776 0.5257 0.5967

LearnToRank 0.4592 0.7449 0.8367 0.5214 0.5988

Locus 0.5000 0.7857 0.8571 0.5463 0.6213

PDE BugLocator 0.3729 0.6440 0.6780 0.3955 0.4961

BLUiR 0.3390 0.5085 0.5932 0.3607 0.4377

AmaLgam 0.3390 0.5593 0.6101 0.3669 0.4458

BRTracer 0.4407 0.7119 0.8146 0.4248 0.5473

LearnToRank 0.2078 0.5260 0.5974 0.2551 0.3533

Locus 0.4000 0.6667 0.7500 0.4321 0.5274

AspectJ BugLocator 0.2762 0.5140 0.6538 0.2299 0.3989

BLUiR 0.2657 0.4895 0.5979 0.2215 0.3782

AmaLgam 0.2622 0.5140 0.6224 0.2194 0.3840

BRTracer 0.3392 0.5874 0.7098 0.2477 0.4455

LearnToRank 0.2422 0.5026 0.6536 0.2327 0.3726

Locus 0.2553 0.4680 0.5319 0.2412 0.3541

JDT BugLocator 0.2021 0.3830 0.4681 0.2011 0.2932

BLUiR 0.2660 0.4787 0.5745 0.2643 0.3775

AmaLgam 0.2766 0.5000 0.5745 0.2567 0.3843

BRTracer 0.2766 0.4681 0.5745 0.2900 0.3832

LearnToRank 0.2021 0.3723 0.4894 0.2008 0.2847

Locus 0.2766 0.5426 0.5851 0.3202 0.3876

Aggregate BugLocator 0.2856 0.5424 0.6535 0.2844 0.4090

BLUiR 0.3303 0.5421 0.6426 0.3146 0.4395

AmaLgam 0.3303 0.5619 0.6552 0.3125 0.4429

BRTracer 0.3610 0.6142 0.7292 0.3279 0.4717

LearnToRank 0.2693 0.5257 0.6526 0.2805 0.3952

Locus 0.3244 0.5660 0.6310 0.3365 0.4325
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Table 6 The performance on industrial projects (before eliminating noisy bug reports and without utilization
of product information)

Projects IRBL tech. Top@1 Top@5 Top@10 MAP MRR

NTA BugLocator 0.3158 0.6667 0.8070 0.4403 0.4623

BLUiR 0.3158 0.6140 0.7895 0.4368 0.4571

AmaLgam 0.3158 0.6140 0.8070 0.4372 0.4574

BRTracer 0.2982 0.6667 0.7895 0.4356 0.4525

LearnToRank 0.3509 0.7018 0.8421 0.4628 0.5137

Locus 0.3509 0.6316 0.8246 0.4606 0.4838

ESP BugLocator 0.3781 0.6670 0.7668 0.4485 0.5049

BLUiR 0.4031 0.6612 0.7735 0.4628 0.5203

AmaLgam 0.4021 0.6747 0.7908 0.4704 0.5251

BRTracer 0.3724 0.6651 0.7543 0.4429 0.4990

LearnToRank 0.3426 0.7140 0.8013 0.4589 0.5086

Locus 0.5518 0.7083 0.7793 0.5927 0.6294

DSLAM BugLocator 0.2197 0.4005 0.4926 0.2224 0.3088

BLUiR 0.2088 0.3934 0.4625 0.2109 0.3002

AmaLgam 0.2153 0.4099 0.4816 0.2196 0.3116

BRTracer 0.2175 0.4230 0.5156 0.2263 0.3181

LearnToRank 0.1589 0.3551 0.4373 0.1843 0.2551

Locus 0.1452 0.3145 0.3995 0.1702 0.2318

OLT BugLocator 0.2393 0.4456 0.5482 0.2454 0.3413

BLUiR 0.2272 0.4267 0.5292 0.2375 0.3284

AmaLgam 0.2303 0.4382 0.5402 0.2412 0.3345

BRTracer 0.2226 0.4416 0.5467 0.2351 0.3307

LearnToRank 0.1946 0.4020 0.5074 0.2172 0.2979

Locus 0.1822 0.3465 0.4421 0.2007 0.2673

IAS BugLocator 0.1889 0.3496 0.4243 0.2309 0.2712

BLUiR 0.1870 0.3731 0.4563 0.2342 0.2776

AmaLgam 0.2007 0.4008 0.4765 0.2515 0.2955

BRTracer 0.1875 0.3590 0.4431 0.2339 0.2742

LearnToRank 0.1701 0.3346 0.4008 0.2137 0.2495

Locus 0.1734 0.3228 0.4051 0.2143 0.2492

BSP BugLocator 0.2253 0.4642 0.5648 0.2220 0.3367

BLUiR 0.2218 0.4437 0.5512 0.2202 0.3289

AmaLgam 0.2287 0.4727 0.5563 0.2377 0.3396

BRTracer 0.2116 0.4505 0.5580 0.2180 0.3259

LearnToRank 0.1621 0.4437 0.5410 0.2068 0.2856

Locus 0.2406 0.4454 0.5307 0.2641 0.3402

ONT BugLocator 0.1960 0.4045 0.4884 0.2421 0.2954

BLUiR 0.1926 0.3979 0.4893 0.2379 0.2921

AmaLgam 0.1935 0.4042 0.4952 0.2386 0.2930

BRTracer 0.1945 0.4020 0.4930 0.2384 0.2932

LearnToRank 0.1712 0.3703 0.4716 0.2247 0.2707

Locus 0.1811 0.3647 0.4557 0.2286 0.2722
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Table 6 (continued)

Projects IRBL tech. Top@1 Top@5 Top@10 MAP MRR

ANP BugLocator 0.1774 0.4229 0.5111 0.2147 0.2900

BLUiR 0.1806 0.4222 0.5056 0.2141 0.2906

AmaLgam 0.1788 0.4240 0.5074 0.2151 0.2896

BRTracer 0.1785 0.4309 0.5281 0.2171 0.2934

LearnToRank 0.1567 0.4465 0.5303 0.2177 0.2893

Locus 0.1748 0.3544 0.4603 0.2056 0.2658

UTS BugLocator 0.1734 0.3822 0.4687 0.2006 0.2735

BLUiR 0.1721 0.3756 0.4590 0.1964 0.2700

AmaLgam 0.1721 0.3738 0.4590 0.1974 0.2709

BRTracer 0.1734 0.3791 0.4704 0.2000 0.2731

LearnToRank 0.1249 0.3517 0.4373 0.1706 0.2276

Locus 0.1377 0.2992 0.3839 0.1640 0.2192

WDM BugLocator 0.1873 0.4508 0.5603 0.2126 0.3105

BLUiR 0.1873 0.4296 0.5324 0.2027 0.3017

AmaLgam 0.1888 0.4330 0.5360 0.2059 0.3048

BRTracer 0.1835 0.4395 0.5461 0.2043 0.3042

LearnToRank 0.1855 0.4200 0.5378 0.2119 0.2982

Locus 0.1724 0.4060 0.5191 0.2025 0.2837

Aggregate BugLocator 0.2110 0.4314 0.5263 0.2370 0.3162

BLUiR 0.2077 0.4219 0.5156 0.2321 0.3110

AmaLgam 0.2105 0.4311 0.5240 0.2369 0.3161

BRTracer 0.2051 0.4307 0.5287 0.2328 0.3129

LearnToRank 0.1802 0.4071 0.5039 0.2208 0.2887

Locus 0.1893 0.3703 0.4656 0.2196 0.2798

open-source projects in Table 5 are slightly different from those in Lee et al. (2018). For
BLUiR, AmaLgam and BRTracer, the reproducibility study (Lee et al. 2018) did not include
the collaborative filtering feature in these approaches (though the original papers evaluated
the effectiveness for both the cases of including and excluding this feature). Therefore our
results are a little higher than theirs when we include this feature in these approaches. In
addition, the results of BRTracer and BLUiR seem to be misplaced in Lee et al. (2018).

Firstly we assess the overall results by comparing the aggregated results shown in the two
tables. It is obvious that the performance on open-source projects is superior over that on
industrial projects. Specifically, for open-source projects, at most 36.1%, 61.4% and 72.9%
bugs could be localized by inspecting top 1, 5 and 10 ranked files, while the percentages
for industrial projects are only 21.1%, 43.1% and 52.9%. The highest aggregated MAP and
MRR for open-source projects are 0.337 and 0.472 respectively, which are higher than the
values in industrial projects (MAP = 0.237 and MRR = 0.326) by nearly 42% and 50%.
We think that it is the industrial issues in the industrial projects that contribute to the low
performance.

We then compare the performance across the projects. Note that the first two projects
in both Table 5 (ZXing and SWT) and Table 6 (NTA and ESP) are much smaller than
other projects, in which less than 1000 source code files are involved. We find that IRBL
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techniques perform well when applied to those small-scale projects, as more than 70%
bugs and 80% of the bugs can be localized respectively within top 5 and top 10 ranked
files. However, the performance on large-scale projects is relatively much lower, especially
for industrial projects, where the Top@5 results range between 38% ∼ 47% and Top@10
results range between 47% ∼ 56%merely. The performance difference between small-scale
and large-scale projects is understandable since locating bugs tend to be increasingly diffi-
cult with the project scaling up. Large projects are usually managed in more complicated
structures and composed of more interactive components, while many tricky bugs might
hide in the interaction between various components. In addition, We find that these IRBL
techniques exhibit close performance in different industrial large-scale projects, where the
optimal MAP varies between 0.201 ∼ 0.264 and the optimal MRR varies between 0.274
∼ 0.341. But the performance variation in the open-source large-scale projects is signif-
icantly higher, given the achieved optimal MAP of 0.432, 0.248, 0.320 and the optimal
MRR of 0.547, 0.446, 0.388 for PDE, AspectJ and JDT respectively. The ranges of MAP
and MRR for open-source projects are as twice to three times as that for industrial projects.
This might be caused by the different qualities of bug reports. The small quantity of bug
reports involved in open-source projects might contribute to the instability of performance
as well.

Furthermore, we compare the performance between different IRBL techniques. For
open-source projects, BRTracer seems to be more effective according to the aggregated
results shown in Table 5. BLUiR, AmaLgam and Locus are supposed to yield the similar
performance. All the approaches outperform BugLocator except LearnToRank. The per-
formance of LearnToRank is probably restricted by the limit number of bug reports, as
training weights for features tend to require abundant data. For industrial projects, all the
six techniques perform in line with each other, and none of them substantially outperforms
the others. Unexpectedly, BugLocator is leading by a narrow margin when compared in
terms of aggregated results. It seems that the improvement schemes of subsequent IRBL
techniques are ineffective for the industrial projects. Actually, most of the improvements
focus on optimizing the lexical similar feature, but this feature accounts for a tiny weight in
the IR models for industrial projects in this study, which leads to the slight differences of
performance among these techniques.

4.2 RQ2: Impacts of Industrial Issues

We point out several kinds of industrial issues in this study, including the SPL issue, the
multilingualism issue, the multiple perspectives of bug reports and the noises issue. In this
section, we investigate the impacts of these issues on the effectiveness of IRBL techniques.

Impact of the Multiple Perspectives of Bug Reports and the Multilingualism Issue We
discuss the impact of the two issues together for the following two reasons: (1) It is difficult
to straightforwardly analyze their concrete impacts using some qualitative and contrast data
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analyses. (2) Both of the two issues mainly affect the lexical similarity feature in IRBL
approaches by leading to a lower similarity score between bug reports and correspondent
source files. In order to analyze their impacts, we explore the effectiveness of the lexical
similarity feature.

Considering that all the studied IRBL techniques maximize their performance by com-
bining multiple features as discussed in Section 2.1, we investigate the effectiveness of the
lexical similarity feature by comparing with other features. Specifically, we focus on com-
paring the effectiveness between the lexical similarity feature and collaborative filtering
feature as they are the primary ones. Other features are all proposed in later IRBL techniques
and can be regarded as complementary parts.

To combine lexical similarity feature and collaborative filtering feature, a weighted sum
function is generally applied in the studied techniques, which is defined as:

FinalScore = (1 − α) × N(ScoreL) + α × N(ScoreC) (4)

where N(ScoreL) and N(ScoreC) respectively indicates the normalized scores of lexical
similarity feature and collaborative filtering feature, and α is used to adjust the weights
between the two features. Thus, we can simply compare the effectiveness of features by
comparing their corresponding weighting factors. As reported in the literature (Zhou et al.
2012), the performance reaches the best when α is between 0.2 and 0.3, which implies that
the lexical similarity feature is more important in open-source projects.

We evaluate the impact of lexical similarity feature and collaborative filtering feature for
industrial projects, by varying the value of α. This evaluation is conducted for all IRBL
techniques that combine the two features, including BugLocator, BLUiR, AmaLgam and
BRTracer. Since α has a consistent impact on each technique, we analyze the impact based
on the results (in terms of MAP and MRR) of BugLocator in this paper, as shown in Fig. 4.
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Fig. 4 Impact of varying α in BugLocator (α represents the weight of collaborative filtering feature)
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We find that the performance is improved with the increase of α from 0 to 0.5. And these
tools achieve the optimum performance when α is between 0.5 and 0.7. Therefore, the col-
laborative filtering feature brings a greater impact on the performance for industrial projects.
We can also find that limited performance is achieved when considering lexical similarity
feature only, as most the MAP and MRR values of industrial large-scale projects are below
0.1 and 0.15 respectively when α is set to 0.

As a result, the lexical similarity feature and collaborative filtering feature have inverse
effectiveness for open-source projects and industrial projects. Combining the vocabulary
overlap results shown in Table 4, we conjecture that due to the poor quality of bug reports
and the multilingualism issue, the lexical similarity between bug reports and related buggy
files tends to be small, which greatly impacts the effectiveness of bug localization. Remark-
ably, the experimental results indicate that the collaborative filtering feature exhibits higher
effectiveness. Even using the collaborative filtering feature only (by setting α = 1), we can
get around 0.2 and 0.3 for MAP and MRR respectively. To clarify this, we manually analyze
300 random bugs that can be successfully located within the top 10 by this feature from all
the projects. For each bug, the most 10 similar historical bug reports and their corresponding
buggy files are extracted, with similarity information (e.g. lexical similarity values, com-
mon tokens between reports) computed for analysis. Among these 3000 similar bug report
pairs, 845 (28.17%) pairs share at least one common buggy files. We suggest that (1) the
abundant historical bug reports in industrial large-scale projects make it more possible to
find much closer or even the same bugs (maybe incompletely resolved bugs appear again)
whose relevant buggy files are responsible for the new bugs, and (2) some source code files
are more vulnerable and more likely to contain bugs, and the collaborative filtering feature
gives higher scores to these files since they have been modified for more times.

Impact of the SPL Issue To investigate the impact of the SPL issue, we divide the large-
scale industrial projects into two groups: a group of non-SPL projects and a group of SPL
projects. Note that the two small-scale projects NTA and ESP are excluded from this evalu-
ation. We compare the difference of performance between the two groups. As all the IRBL
approaches have similar performance, we take the case of BugLocator as the basis for
discussion.

Table 7 shows the individual and aggregate performance values of non-SPL projects and
SPL projects respectively. From the table, we can see that the aggregate results of SPL
projects are slightly lower than those of non-SPL projects in terms of Top@5, Top@10,
MAP andMRR. However, the difference between the Top@1 values is relatively significant,
as the aggregate Top@1 value of SPL projects is about 15% lower than that of non-SPL
projects. We conjecture that the low Top@1 result is related with the SPL issue because
similar code in different software features tends to get close recommendation scores and the
metric Top@1 is sensitive to the order of these files. The impacts to Top@5 and Top@10
are not so severe, as these metrics do not require the buggy files to rank first. Definitely,
the low Top@1 result maybe related with some other factors, such as the number of source
code files. In the next section, we investigate whether utilizing product information helps
improve the performance, and the investigation will also reflect the impact of the SPL issue
in a certain sense.

Impact of the Noises Issue After a comprehensive investigation of the defect tracking sys-
tem and interviews with many developers/stakeholders in Huawei, we conclude that the
noisy reports fall into the following categories: (1) Committed by routine maintenance tools
like code style checker, program lint, etc. (2) Casually committed reports. Programmers
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Table 7 The performance of BugLocator for non-SPL projects and SPL projects

Projects Top@1 Top@5 Top@10 MAP MRR

Non-SPL projects

DSLAM 0.2197 0.4005 0.4926 0.2224 0.3088

OLT 0.2393 0.4456 0.5482 0.2454 0.3413

BSP 0.2253 0.4642 0.5648 0.2220 0.3367

UTS 0.1734 0.3822 0.4687 0.2006 0.2735

Aggregate 0.2214 0.4256 0.5230 0.2308 0.3213

SPL projects

IAS 0.1889 0.3496 0.4243 0.2309 0.2712

ONT 0.1960 0.4045 0.4884 0.2421 0.2954

ANP 0.1774 0.4229 0.5111 0.2147 0.2900

WDM 0.1873 0.4508 0.5603 0.2126 0.3105

Aggregate 0.1876 0.4156 0.5080 0.2237 0.2955

may write casual reports for a code commitment, just to comply with company’s regula-
tions. (3) Generated by other software activities mentioned in the literature. For some part
of these noises, we design heuristic rules to identify noisy report in the data set. Note that
many noises are not easy to be recognized by using simple rules (e.g. most casually com-
mitted reports). As shown in Table 2, a large proportion of bug reports in the data set are
classified as noises by our rules. For noisy reports, there is hardly any useful clue between
the reports and the buggy files. IRBL algorithms are always misled by these noises.

4.3 RQ3: Overcoming Industrial Issues

The multiple perspectives of bug reports and the multilingualism problem seem to be the
primary causes that hamper the efficiency of IRBL techniques for industrial projects. How-
ever, overcoming the two issues requires some complex and innovative solutions, such as
query reformulation (Rahman and Roy 2018b), cross-language information retrieval tech-
niques (Oard and Diekema 1998), etc. These will be the new directions in our future work.
In this study, we focus on investigating whether the noises issue and the SPL issue can be
overcome when additional information or hints are provided.

1) Eliminating Noises in Bug Reports

To investigate whether eliminating noises helps improve the performance, we compare
the performance before and after eliminating noises in bug reports. We propose a simple
heuristic rule for identifying the noisy bug reports after analyzing a large amount of data and
consulting with the relevant developers. We summarize a list of keywords, such as “cyclo-
matic complexity”, “pc-lint”, “fix warnings”, etc. Bug reports that contain these keywords
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are regarded as noises, since they generally refer to other software activities rather than
fixing a bug. Note that this rule is trivial but effective enough for our investigation.

As the noises have similar impact on each IRBL technique, we use BugLocator as an
example for discussion and illustration. Table 8 shows the performance (in terms of MAP
and MRR) of BugLocator in two different configurations: retaining and eliminating noisy
bug reports. Mann-Whitney U test (Mann and Whitney 1947) is used to verify whether the
differences are significant. For most projects, eliminating noisy bug reports helps improve
both MAP and MRR values. But the extent of improvement varies with projects. For UTS
and WDM, the MAP values are slightly increased by 0.0031 and 0.0018, and the MRR
values are increased by 0.0011 and 0.0073. Comparatively, ESP and DSLAM have a decent
performance improvement, where the MAP values are increased by 0.0445 and 0.037, and
the MRR values are increased by 0.0413 and 0.0195.

Additionally, the performance of NTA and BSP decreases after removing noises in bug
reports, but the decrease seems to be insignificant. The exceptions can be interpreted from
the following two perspectives. (1) Inspecting noisy bug reports by key words is simplistic,
which may lead to some misjudgments. Some noises might be omitted while some non-
noisy bug reports might be misclassified. (2) Some noisy bugs are localizable, as their bug
reports contain identifiable information that hints at buggy files. Moreover, for some noisy
reports, there are a large number related files to fix. For example, sometimes refactoring an
important class may modify most source files in a project. These noisy reports, however,
are positive to IRBL performances.

2) Utilizing Product Information

As shown in Table 2, four of the projects adopt SPL strategy, namely IAS, ONT, ANP
and WDM. These projects involve 5, 28, 26 and 12 products respectively. As the Huawei
defect tracking system records a product information for each bug report, we verify whether
the SPL problem can be alleviated by utilizing this information. In SPL projects, a product is
composed of several software features, and tends to be independent from the other features.
By giving the product information, IRBL is able to narrow the search range from the whole

Table 8 Comparison between performance results for BugLocator including and excluding noisy bug reports

Projects Noisy bugs included Noisy bugs excluded

MAP MRR MAP MRR

NTA 0.4403 0.4623 ↘ 0.4328 ↘ 0.4617

ESP 0.4485 0.5049 ↗ 0.4930∗∗ ↗ 0.5462∗∗

DSLAM 0.2224 0.3088 ↗ 0.2594∗∗ ↗ 0.3283∗

OLT 0.2454 0.3413 ↗ 0.2699∗∗ ↗ 0.3534∗∗

IAS 0.2309 0.2712 ↗ 0.2496 ↗ 0.2830

BSP 0.2220 0.3367 ↘ 0.2212 ↘ 0.3317

ONT 0.2421 0.2954 ↗ 0.2591∗ ↗ 0.3111∗

ANP 0.2147 0.2900 ↗ 0.2291∗ ↗ 0.3040∗

UTS 0.2006 0.2735 ↗ 0.2037 ↗ 0.2746

WDM 0.2126 0.3105 ↗ 0.2144 ↗ 0.3178

Aggregate 0.2370 0.3162 ↗ 0.2515∗∗ ↗ 0.3272∗∗

∗: p-value < 0.05, ∗∗: p-value < 0.01, ↗: increased, ↘: decreased
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repository down to the selected features. Note that there is not a particular product value for
the core part shared by multiple products in these SPL projects. Therefore the core part will
not be excluded for each product.

When providing product information, we also adapt the calculation method for collabo-
rative filtering feature score and version history feature score by considering the historical
bug reports with the same product only. This adaptation is based on the assumption that the
fixed files of bugs with the same product are usually more responsible for the new com-
ing bugs. Note that when calculating the lexical similarities in this setting, we use the same
source code corpus and bug report corpus as that used in RQ1 instead of creating separate
corpora for each product. This would have a limited effect on the results (we calculate the
similarities based on tf-idf model, and only the idf value of words will be slightly affected).

Table 9 compares the performance of each IRBL techniques with and without utilization
of product information for each SPL project (noisy bug reports are eliminated in this com-
parison). From the table, we can see that all the six techniques perform better when utilizing
product information, except for Locus when applied to ONT. The improvement of perfor-
mance for WDM is the most significant, as the performance of BugLocator improves from
0.214 to 0.248 MAP and from 0.318 to 0.363 MRR. However, the improvements for ONT
are lower, given that the performance of BugLocator improves from 0.259 to 0.268 MAP
and from 0.311 to 0.321 MRR. The different degrees of improvements might be induced by
multiple complicated factors, such as the number of products, the structure of projects, the
correctness of provided product information, etc.

The last group in Table 9 shows the aggregated results for each IRBL technique. It sug-
gests that all the first five techniques have similar improvements in terms of MAP andMRR,
while the improvements of Locus is less significant. This is mainly caused by the strategy
of using product information. We adjust the procedure of calculating collaborative filtering
feature score when considering product information, but Locus does not involve this feature.

4.4 Feedback from Practitioners

Lastly, We surveyed 25 Huawei practitioners who are working on our evaluated projects and
collected feedback about their willingness to adopt IRBL techniques and their satisfaction
level with the performance of existing IRBL techniques.

As shown in Fig. 5, around two-thirds (68%) of the practitioners stated that they would
be willing or very willing to use IRBL techniques when resolving bugs. Only 3 practitioners
said they were generally unwilling, and the major reason is that they do not believe that
IRBL tools can help locate difficult bugs, and they prefer traditional debugging ways by
setting breakpoints or single-stepping which can help them understand program behavior.
The others held a neutral attitude towards these techniques as they are not sure about their
effectiveness.

To evaluate practitioners’ satisfaction level with the performance of existing IRBL tech-
niques, we surveyed on their expectation for Top@1 and Top@5 accuracy. The percentages
of practitioners who were satisfied with different result values are shown in Fig. 6. Only
a small proportion of practitioners (less than 20%) accepted the Top@1 result of 20% and
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Table 9 Comparison between performance results with and without utilizing product information

Projects IRBL tech. Without utilization With utilization

MAP MRR MAP MRR

IAS BugLocator 0.2496 0.2830 ↗ 0.2736∗∗ ↗ 0.3099∗∗

BLUiR 0.2471 0.2798 ↗ 0.2727∗∗ ↗ 0.3068∗∗

AmaLgam 0.2644 0.2984 ↗ 0.2916∗∗ ↗ 0.3264∗∗

BRTracer 0.2511 0.2860 ↗ 0.2722∗∗ ↗ 0.3139∗∗

LearnToRank 0.2287 0.2609 ↗ 0.2452∗ ↗ 0.2796∗

Locus 0.2357 0.2670 ↗ 0.2560∗∗ ↗ 0.2896∗∗

ONT BugLocator 0.2591 0.3111 ↗ 0.2678∗ ↗ 0.3211

BLUiR 0.2511 0.3042 ↗ 0.2584 ↗ 0.3125

AmaLgam 0.2537 0.3066 ↗ 0.2599 ↗ 0.3142

BRTracer 0.2562 0.3093 ↗ 0.2695∗∗ ↗ 0.3238∗∗

LearnToRank 0.2439 0.2899 ↗ 0.2482 ↗ 0.2949

Locus 0.2238 0.2650 ↘ 0.2171 ↘ 0.2618

ANP BugLocator 0.2291 0.3040 ↗ 0.2486∗∗ ↗ 0.3215∗

BLUiR 0.2243 0.3009 ↗ 0.2476∗∗ ↗ 0.3263∗∗

AmaLgam 0.2251 0.2993 ↗ 0.2490∗∗ ↗ 0.3216∗∗

BRTracer 0.2307 0.3054 ↗ 0.2513∗∗ ↗ 0.3246∗

LearnToRank 0.2320 0.2985 ↗ 0.2525∗∗ ↗ 0.3227∗∗

Locus 0.2141 0.2697 ↗ 0.2230∗ ↗ 0.2789

WDM BugLocator 0.2144 0.3178 ↗ 0.2478∗∗ ↗ 0.3639∗∗

BLUiR 0.2017 0.3043 ↗ 0.2353∗∗ ↗ 0.3519∗∗

AmaLgam 0.2054 0.3079 ↗ 0.2388∗∗ ↗ 0.3544∗∗

BRTracer 0.2069 0.3120 ↗ 0.2411∗∗ ↗ 0.3589∗∗

LearnToRank 0.2098 0.3012 ↗ 0.2332∗∗ ↗ 0.3338∗∗

Locus 0.2035 0.2845 ↗ 0.2153∗∗ ↗ 0.2974∗∗

Aggregate BugLocator 0.2343 0.3082 ↗ 0.2566∗∗ ↗ 0.3353∗∗

BLUiR 0.2261 0.3003 ↗ 0.2492∗∗ ↗ 0.3295∗∗

AmaLgam 0.2306 0.3042 ↗ 0.2537∗∗ ↗ 0.3322∗∗

BRTracer 0.2314 0.3063 ↗ 0.2557∗∗ ↗ 0.3355∗∗

LearnToRank 0.2266 0.2923 ↗ 0.2434∗∗ ↗ 0.3138∗∗

Locus 0.2156 0.2735 ↗ 0.2229∗∗ ↗ 0.2825∗

∗: p-value < 0.05, ∗∗: p-value < 0.01, ↗: increased, ↘: decreased

the Top@5 result of 40%. To achieve a satisfaction rate of 80% among the practitioners, the
Top@1 and Top@5 results need to reach nearly 60% and 80% respectively, which are sig-
nificantly higher than the results of existing IRBL techniques. Practitioners generally have
a high expectation because they think that inspecting wrongly recommended code files will
aggravate their burden of locating bugs. Besides, a low localization accuracy also shakes
their confidence in IRBL tool.

Briefly, most practitioners are willing to adopt IRBL tools in bug localization processes,
but existing techniques have not met their desired extent. In order to apply IRBL techniques
to practice, we still need to improve the performance substantially.
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Fig. 5 Practitioners’ willingness to adopt IRBL techniques

5 Potential Improvements for IRBL

Our experiment results suggest that there is still much room for improving IRBL techniques.
Following are some insights for the improvements.

1) Leveraging program analysis techniques: Most existing IRBL approaches treat bug
reports and source codes as plain text. Although BLUiR separates different parts
of code (class names, method names, variables names and comments) to improve
matching, fundamentally it processes programming languages as structured natural
languages. Given more program information like control-flow graphs and data-flow
information, it is possible to locate buggy file more precisely. Consider the bug report
1 in Fig. 1, although the key word “SPH” occurs in the report, the buggy file itself does
not contain the key word. The reason is that the key word is stored in another file as a
string resource and is used by the buggy file. Given some data-flow information, we are
able to list all source files that use the “SPH” string as suspicious buggy files, when a
report containing “SPH” is issued. For SPL projects, advanced program analysis tech-
niques would help locate the root cause of a report in a complex product-feature-module
hierarchy. Locating at a finer level enables a higher localization accuracy. For exam-
ple, if we provide the feature information (analysed after the fact) for each bug report
in project WDM, the performance of BugLocator would get a significant increase as
shown in Table 10. Hence, leveraging sophisticated program analysis technique is able
to boost the performance of IRBL in large-scale projects, as well as SPL projects.

Fig. 6 Practitioners’ expectation for Top@1 and Top@5 results
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Table 10 The performance gain of BugLocator after providing feature information for WDM

Top@1 Top@5 Top@10 MAP MRR

Before 0.2361 0.5183 0.6144 0.2478 0.3639

After 0.3419 0.6025 0.7002 0.3225 0.4612

2) Utilizing Cross Language Information Retrieval (CLIR) techniques: CLIR (Oard and
Diekema 1998) is a subfield of information retrieval, where queries and documents are
expressed in different languages. Various CLIR techniques have been proposed and
applied to both research and practice, and the most accurate techniques are supposed
to be nearly as effective as monolingual information retrieval. Considering that exist-
ing IRBL techniques is less effective for multilingual projects due to the lexical gap
problem, we can introduce some CLIR techniques to mitigate this problem.

3) Improving effectiveness of collaborative filtering feature: Our experiment results indi-
cate that collaborative filtering feature can be as important as or even more important
than lexical similarity feature. Thus the performance of bug localization can be further
improved by optimizing collaborative filtering algorithm.We provide the following two
possible improvement schemes: (1) Existing IRBL techniques aggregate similarities
of all historical bug reports when calculating collaborative filtering scores for source
code files. However, the effectiveness of this feature might be negatively affected when
the historical bug reports are excess, as most historical bugs are extraneous to the new
coming bugs and source code files that have been modified for many times tend to get
a higher score. To alleviate this problem, we can enforce a threshold for similarity or
the number of similar bug reports. (2) Similarities between bug reports are mainly cal-
culated based on VSM model now, which ignores the latent semantic relationships. Ye
et al. (2016) propose to calculate document similarities using word embeddings. How-
ever, this approach requires a large scale of corpus (such as API documents, tutorials,
etc.) to train the word embeddings. Fortunately, some state-of-the-art deep language
models (such as BERT (Devlin et al. 2018)), which have been pre-trained for gener-
ous purpose on enormous amount of unlabeled data, can be applied to specific tasks by
simply fine-tuning. They can be applied to the similarity problem by converting it to
the classic two-sentences task.

4) Detecting noises in intelligent ways: In this study, we find that eliminating noisy bug
reports can improve the performance of bug localization. Actually, some studies have
explored approaches for automatically detecting noises (Kim et al. 2011a; Pingclasai
et al. 2013; Qin and Sun 2018). Text classification models and clustering models are
respectively applied to distinguish between clean bugs and noisy bugs in supervised
and unsupervised approaches. These approaches have been shown to be helpful in the
field of defect prediction. Thus we can also attempt to apply them to IR-based bug
localization.

6 Threats to Validity

There are some potential threats to the validity of our study.

1) This study comprehensively evaluates the performance of IRBL techniques on large-
scale, industrial projects. However, all the industrial projects come from Huawei and
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may not represent projects from other companies. In the future, we will perform a larger
scale evaluation on the projects from different companies.

2) This study selects five open-source Java projects commonly used in the literature for
comparison. These projects are somewhat outdated and scanty, which may raise several
threats to validity as the comparison may be biased and not comprehensive enough.
Although a set of new projects are proposed in a recent reproducibility study (Lee et al.
2018), we did not use these new projects based on the following concerns: (1) most of
these projects are much small (35 of 46 projects are composed of less than 1000 source
files, while only 3 projects contain more than 5000 source files). (2) There were big
discrepancies in IRBL performance among these projects (the highest MAP for each
project ranges from 0.04 to 1.0 and MRR ranges from 0.05 to 1.0). Over high or over
low results are apparently special cases, making it difficult to draw general conclu-
sions for open-source projects. (3) The old projects are still the most representative and
widely-used benchmarks in the literatures. And the aggregated MAP and MRR results
of new open-source projects are close to those of old open-source projects. Consider-
ing that the aim of this study is to analyze the challenges of adapting IRBL to industrial
projects, the old projects will not bias our analysis in comparison.

3) For each project, we use a single release for bug localization. Bug reports are removed
if their correspondent buggy files are all excluded from this release. The single release
strategy simplifies the procedure of evaluation and is adopted by most IRBL studies.
For more accurate assessment, we can simulate the realistic situation by checking a
before-fix version for each bug report. But it is not scalable for a large-scale experiment.

4) This study regards all the modified files for a bug fix commit as the buggy files, like
existing studies on open-source projects. However, some files fixed for a bug may be
incidentally modified and have little relationship with the bug. Including those files
imposes a certain extent of threat to the validity of the study. Removing incorrect fixed
files is much impractical for large-scale projects as (1) it takes much effort of practition-
ers to identify the incorrect files (source code and modifications need to be reviewed
for each bug), and (2) some modified files which seem incorrect may not be directly
related with the bugs but implicitly interact with the direct buggy files.

7 RelatedWork

We review briefly previous work related to the two aspects: IR-based bug localization and
IRBL-related studies.

7.1 IR-Based Bug Localization

IR-based bug localization has been an active area of research for over two decades. Various
IR models have been applied, such as Latent Semantic Indexing (LSI) (Poshyvanyk et al.
2007), Latent Dirichlet Allocation (LDA) (Lukins et al. 2010), and Vector Space Model
(VSM) (Zhou et al. 2012). As VSMmodel shows better performance than others, it has been
widely used in latter researches. Recent studies also advocate for combing multiple features
gathered from the software to improve IRBL performance. These features include structured
information (Saha et al. 2013; Wang and Lo 2014), historical bug reports (Zhou et al. 2012;
Wang and Lo 2014), version history (Sisman and Kak 2012; Wang and Lo 2014; Wen et al.
2016), stack traces (Wong et al. 2014), and so on. Furthermore, some studies consider adopt-
ing machine learning techniques. Ye et al. (2014) proposed to optimize weights for different
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features using learning-to-rank technique. Lam et al. (2015, 2017) proposed to incorporate
deep learning into IR-based bug localization to alleviate the vocabulary mismatch problem.

7.2 IRBL-Related Studies

Apart from proposing novel IRBL techniques, a large number of empirical studies are
conducted on the area of IR-based bug localization. Saha et al. (2014) conducted a study
investigating the effectiveness of an IRBL technique (specifically BLUiR) for C programs,
and suggested that the performance is comparable with that on Java programs. Le et al.
(2014, 2017) attempted to predict whether a recommendation for a given bug report is likely
to be effective or not, supposing the recommendation to be effective if the top-N ranked files
produced by IRBL tools include at least one buggy file. Wang et al. (2015) conducted an
analytical study evaluating the usefulness of IRBL techniques. They pointed out that these
techniques do not perform well if bug reports lack rich structured information.

Some researches focus on improving the quality of queries formulated from the full text
of bug reports. Mills et al. (2017) introduced an automatic query quality prediction approach
which can be used to identify low-quality bug reports whose responsible buggy files can
hardly be located by IRBL techniques. The identified low-quality reports can be further
reformulated manually or by other reformulation techniques. Mills et al. (2020) devised
a Genetic Algorithm (GA) that selects words from a bug report vocabulary to construct a
near-optimal query and provided the evidence on the potential improvements of IRBL effec-
tiveness by optimizing queries. However, they only presented a preliminary study as their
GA is based on the condition that the ground truth is known and cannot be used in a real bug
localization scenario. Chaparro et al. (2019) proposed to reformulate queries by selecting
existing information from bug reports (including title, observed behavior, expected behav-
ior, code snippets, etc.) and remove the irrelevant parts. This approach requires the bug
reports to contain rich structured information. Rahman and Roy (2018b) presented BLIZ-
ZARD, which first classifies bug reports according to whether there are excessive program
entities in the description, and then applies appropriate reformulations to each category. For
bug reports containing only unstructured natural language description, BLIZZARD com-
plements them with appropriate keywords from top ranked source code files returned by
the IRBL tool for the initial query. The effectiveness of these reformulation techniques on
industrial large-scale projects will be explored in our future study.

Mostly closely related to our work, Lee et al. (2018) conducted a reproducibility study
on the performance of IRBL techniques. They considered that the benchmarks used in
existing researches have not yet reached the level of maturity, thus collected 46 new Java
projects and performed a comprehensive evaluation. Their experiment results showed that
the IRBL performance is higher on the new projects. However, most of these projects are
small-scale and involve less than 1000 source code files. Akbar and Kak (2020) divided
existing IRBL techniques into three generations, and performed a comparative evaluation
on large-scale projects in multiple programming languages. They focused on the compar-
ison between different generations and found that those IRBL techniques, which exploit
proximity, order, and semantic relationships between the terms of bug reports and source
code, have a better performance. However, their study did not thoroughly evaluate the IRBL
effectiveness on large-scale projects and they only considered open-source projects, while
industrial projects might possess some special characteristics that have an adverse impact
on IRBL performance.
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8 Conclusion

To advance the application of IR-based bug localization in real-world scenarios, we perform
an empirical study on the effectiveness of six state-of-the-art IRBL techniques for Huawei
large-scale projects. Through the empirical study, we identify some industrial issues existing
in the industrial projects, including SPL problem, multilingualism problem and poor qual-
ity of bug reports. These issues lead to a degradation of performance compared with that on
open-source projects. We further conduct some experiments revealing that the performance
can be improved by minimizing the impact of some issues. However, some limitations
exist as approaches to overcoming the multiple perspectives of bug reports and the mul-
tilingualism problem are not investigated in this study. Lastly, we propose some potential
improvements on IRBL techniques in this paper.

To our best knowledge, this is the first work for evaluating the industrial practice related
to IR-based bug localization. We believe that our study is helpful for researchers and prac-
titioners to further improve current IRBL techniques. We also expect that our study could
provide benefits for some other IR-related researches in software engineering.
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