
Statistical Type Inference for Incomplete Programs
Yaohui Peng

pengyaohui@whu.edu.cn
School of Computer Science, Wuhan

University
China

Jing Xie
xj199704@whu.edu.cn

School of Computer Science, Wuhan
University
China

Qiongling Yang
yangqiongling@whu.edu.cn

School of Computer Science, Wuhan
University
China

Hanwen Guo
hanwen.guo@whu.edu.cn

School of Computer Science, Wuhan
University
China

Qingan Li
qingan@whu.edu.cn

School of Computer Science, Wuhan
University
China

Jingling Xue
j.xue@unsw.edu.au

School of Computer Science and
Engineering, University of New South

Wales
Australia

Mengting Yuan∗
ymt@whu.edu.cn

School of Computer Science, Wuhan
University
China

ABSTRACT

We propose a novel two-stage approach, Stir, for inferring types in
incomplete programs that may be ill-formed, where whole-program
syntactic analysis often fails. In the first stage, Stir predicts a type
tag for each token by using neural networks, and consequently,
infers all the simple types in the program. In the second stage,
Stir refines the complex types for the tokens with predicted com-
plex type tags. Unlike existing machine-learning-based approaches,
which solve type inference as a classification problem, Stir reduces
it to a sequence-to-graph parsing problem. According to our experi-
mental results, Stir achieves an accuracy of 97.37% for simple types.
By representing complex types as directed graphs (type graphs),
Stir achieves a type similarity score of 77.36% and 59.61 % for
complex types and zero-shot complex types, respectively.

CCS CONCEPTS

• Computing methodologies→Machine learning; • Software

and its engineering→ Language features.

KEYWORDS

Type inference, deep learning, structured learning, graph generation
ACM Reference Format:

Yaohui Peng, Jing Xie, Qiongling Yang, Hanwen Guo, Qingan Li, Jingling
Xue, and Mengting Yuan. 2023. Statistical Type Inference for Incomplete

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616283

Programs. In Proceedings of the 31st ACM Joint European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616283

1 INTRODUCTION

Type inference, as an essential part of type systems, is widely used in
program analysis, program abstraction, program optimization, and
language security (among others). For whole programs, traditional
type systems rely on syntax rules and type rules [7, 10, 37]. There-
fore, well-typed terms (e.g., code snippets) must be well-formed.

Problem Statement. For software engineering tasks such as
code search [6, 45, 46, 50], code mining [33], code review [47] and
code summarization [18], which focus on code snippets retrieved
from programming forums or code repositories, programs may be
incomplete or even ill-formed. In addition, real-time program anal-
ysis tasks, such as code completion [19] in source code editors, also
tend to parse incomplete programs. For example, a simple C/C++
program in several lines of code containing an include directive
to a header file in SDKs may be expanded by a preprocessor into
millions of lines of code, whose behavior can be hard to predict
[28]. In this paper, we aim to infer types from such incomplete or
ill-formed programs, for which whole-program syntactic analysis
is often inapplicable. Software engineering tasks for incomplete
programs will benefit from such inferred type information, as they
are no longer plain text.

Prior Work. Recently, machine learning has been adopted to
perform type inference in whole programs. Some reason about type
information probabilistically [39, 40, 42, 51] while others resort
to deep learning [3, 26, 36, 38, 49]. These efforts require whole-
program syntactic analysis to convert a program into features before
machine learning is applied. SnowWhite [22] predicts types for
function parameters and return values in WebAssembly binary, yet
still well-formed, programs. PsycheC [29] can handle ambiguous

https://doi.org/10.1145/3611643.3616283
https://doi.org/10.1145/3611643.3616283

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yaohui Peng et al.

(b) Source Code Fragment

 1 char** getFiles(char *pathToScan, int size)

 2 {

 3 DIR *d;

 4 struct dirent *dir;

 5 char** filesName;

 6 int i = 0;

 7 filesName = malloc(sizeof(char*) * size);

 8 d = opendir(pathToScan);

 9 ...

10

11 return filesName;

12 }

(b) Source Code Fragment

 1 char** getFiles(char *pathToScan, int size)

 2 {

 3 DIR *d;

 4 struct dirent *dir;

 5 char** filesName;

 6 int i = 0;

 7 filesName = malloc(sizeof(char*) * size);

 8 d = opendir(pathToScan);

 9 ...

10

11 return filesName;

12 }

(d) Primitive Types

 1 χ χ χ func χ χ χ ptr χ χ int χ
 2 χ

 3 struct χ ptr χ

 4 χ struct χ ptr χ

 5 χ χ χ ptr χ

 6 χ int χ int χ

 7 ptr χ func χ χ χ χ χ χ χ ptr χ χ

 8 ptr χ func χ ptr χ χ
 9 ...

10

11 χ int χ

12 χ

(d) Primitive Types

 1 χ χ χ func χ χ χ ptr χ χ int χ
 2 χ

 3 struct χ ptr χ

 4 χ struct χ ptr χ

 5 χ χ χ ptr χ

 6 χ int χ int χ

 7 ptr χ func χ χ χ χ χ χ χ ptr χ χ

 8 ptr χ func χ ptr χ χ
 9 ...

10

11 χ int χ

12 χ

(c) Ground Truth in Header Files

 1 // <dirent.h>

 2 typedef struct dirent {

 3 long d_ino;

 4 long d_off;

 5 short d_reclen;

 6 char d_type;

 7 char d_name[MAX+1];

 8 } dirent;

 9

10

11 typedef struct {

12 struct dirent ent;

13 struct wdir *wdirp;

14 } DIR;

15

16 struct dirent* opendir(

 char* dir_name);

17

18 // <stdlib.h>

19 void* malloc(int size);

20

21 // <string.h>

22 int strlen(

 const char* string);

24 char* strcpy(char* dest,

 char* src);

26 char* strcat(char* dest,

 const char* src);

(c) Ground Truth in Header Files

 1 // <dirent.h>

 2 typedef struct dirent {

 3 long d_ino;

 4 long d_off;

 5 short d_reclen;

 6 char d_type;

 7 char d_name[MAX+1];

 8 } dirent;

 9

10

11 typedef struct {

12 struct dirent ent;

13 struct wdir *wdirp;

14 } DIR;

15

16 struct dirent* opendir(

 char* dir_name);

17

18 // <stdlib.h>

19 void* malloc(int size);

20

21 // <string.h>

22 int strlen(

 const char* string);

24 char* strcpy(char* dest,

 char* src);

26 char* strcat(char* dest,

 const char* src);

 Token Type expression

 getFiles func ptr ptr char eot eot ptr ...

 pathToScan ptr char int eot

 DIR struct struct char ptr char eot ...

 d ptr struct struct char ptr char ...

 dirent struct char ptr char eot eot

 dir ptr struct char ptr char eot ...

 malloc func ptr void eot int eot

 opendir func ptr struct struct char ptr char eot ...

 readdir func ptr struct char ptr char eot ptr ...

(e) Type Expressions(e) Type Expressions

 Token Type expression

 getFiles func ptr ptr char eot eot ptr ...

 pathToScan ptr char int eot

 DIR struct struct char ptr char eot ...

 d ptr struct struct char ptr char ...

 dirent struct char ptr char eot eot

 dir ptr struct char ptr char eot ...

 malloc func ptr void eot int eot

 opendir func ptr struct struct char ptr char eot ...

 readdir func ptr struct char ptr char eot ptr ...

(e) Type Expressions

(a) A Thread in Programming Forum(a) A Thread in Programming Forum

(f) Final Complex Types

ptrptr structstruct funcfunc intintcharchar voidvoidptr struct func intchar void

...

. . .

...

...

. . .

...DIR

struct{struct{char, char*}}

DIR

struct{struct{char, char*}}

opendir

char*→(struct{struct{char, char*}}*)

opendir

char*→(struct{struct{char, char*}}*)

dirent

struct{char, char*}

dirent

struct{char, char*}

readdir

struct{struct{char, char*}}*

 →(struct{char, char*}*)

readdir

struct{struct{char, char*}}*

 →(struct{char, char*}*)

Figure 1: A motivating example. For a thread, shown in (a), posted in Stack Overflow, Stir analyzes its code snippet shown

in (b) without considering the relevant ground truth types that are available in the omitted header files shown in (c). In the

prediction stage ((b)→(d)), Stir predicts a type tag for each identifier token, and consequently, all the simple types, where 𝜒

stands for “type information is not applicable”. In the refinement stage ((d)→(e)→(f)), Stir first translates a sequence of tokens

with inferred type tags into type expressions ((d)→(e)) and then refines complex types from type expressions ((e)→(f)).

(with T representing possibly either a type or a variable) yet well-
formed incomplete C programs, but cannot infer types in ill-formed
programs. To the best of our knowledge, DeepTyper [14] is the
only one that requires no syntactic analysis but applies NLP to
infer types from well-formed programs (complete or not). However,
all these prior approaches solve type inference as a classification
problem, where types are mapped to type tags. Such a formulation
has two undesirable consequences. First, it is impossible to infer
fresh types, as they are unavailable in the training stage. Second,
type correlation is lost, since types are treated as discrete labels,
making it difficult to infer complex types. In practice, a type system
often provides complex types, e.g., functions, tuples, and references
to characterize high-level objects. Therefore, types are structural
objects and cannot be converted into a finite set of discrete labels.
For the traditional rule-based type inference on a whole program,
types can be deduced inductively in a syntax-directed manner. For
incomplete or ill-formed programs, however, learning complex
structures is much harder than solving a classification problem.

Our Solution. We introduce Stir, a statistical approach to infer-
ring types in incomplete or ill-formed programs. In the absence of

syntactic knowledge, a program is literally plain text. Our first in-
sight is that even plain text can still provide hints for type inference.
These hints can be local (e.g., the type of an identifier “count” has a
great chance of being int), contextual (e.g., the left-hand side and
the right-hand side of the operator ‘=’ may share the same type), or
global (e.g., the implication between the declaration of an identifier
and its later uses). Given enough training data, it is possible to
capture such hints. Our second insight is that although learning
structures directly from plain text is hard (as demonstrated in, for
example, protein prediction [23]), we can transform the type in-
ference problem into a sequence-to-graph parsing problem, which
entails translating a type from a sequential representation to a
graphical representation. Assisted further by a probabilistic model,
Stir can infer types more effectively than the prior work that relies
on learning types directly from plain text (e.g., DeepTyper).

Stir infers types in two stages. In the prediction stage, we use
a BiLSTM-CRF model to predict type tags for individual tokens.
Tokens are transformed into vectors to be fed to the model in order
to learn local type hints, BiLSTM (Bidirectional Long Short-Term

Statistical Type Inference for Incomplete Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Memory [16]) is used to capture contextual clues, and CRF (Con-
ditional Random Field [21]) is designed to learn global knowledge.
At the end of this first stage, a source program, which is a sequence
of tokens, is translated into a sequence of type tags. The tokens
tagged with primitive type tags are classified as simple type tokens,
and therefore will not be refined in the second stage.

In the refinement stage, we refine or infer the actual complex
types for the tokens with complex type tags. We first apply multi-
head attention [48] to capture the type correlation among the to-
kens. We then use a generative model to obtain a type expression
per token. For the type expressions that are incomplete or ill-formed
(due to the nature of machine learning), we have designed a proba-
bilistic model to recover their complex types. Instead of repairing an
incomplete program directly, repairing type expressions achieves
higher accuracy as the domain space has been massively reduced.

Contributions. To the best of our knowledge, Stir is the first
to infer complex types (including zero-shot types) in incomplete or
ill-formed programs with an infinite type vocabulary.
• We introduce Stir, a novel two-stage approach for inferring
types in incomplete or ill-formed programs statistically.
• We propose a BiLSTM-CRF model that can generate highly
precise type tags for simple and complex types.
• We reduce the type inference problem for constructing com-
plex types to a sequence-to-graph parsing problem.
• We show experimentally that Stir advances the state of the
art in performing type inference in incomplete programs.

The rest of the paper is organized as follows. Section 2 moti-
vates Stir with an example. Section 3 introduces Stir. Section 4
describes and analyzes our experimental results. Section 5 discusses
the related work. Section 6 concludes the paper.

2 A MOTIVATING EXAMPLE

We use an example to show how Stir infers complex types in
incomplete programs. Figure 1(a) depicts a thread from Stack Over-
flow1. Figure 1(b) gives the code snippet in C extracted from the
corresponding question. Figure 1(c) gives the ground-truth types
available in the header files that are omitted but would otherwise
be included in the corresponding complete program. Although pro-
grammers who are familiar with Linux file systems may correctly
deduce the type for each user-defined identifier in the code snippet,
traditional rule-based type inference approaches will fail, as the
header files (Figure 1(c)) are missing in the thread.

Given the code snippet as an incomplete program, Stir infers the
complex types for its identifiers as shown in Figure 1(f) according
to the workflow Figure 1(b)→Figure 1(d)→Figure 1(e)→Figure 1(f).
Each inferred complex type may be incomplete if some of its parts
are never used in the code snippet. However, the inferred complex
types are expected to make the code snippet well-typed.

Stir infers types in the following two stages:
• Prediction. In this first stage, Stir acts as a classifier to predict
type tags for the tokens that represent user-defined identifiers. It
takes as input the code snippet in Figure 1(b) as a sequence of
tokens and produces as output a sequence of type tags in Figure
1(d). For this example, the five relevant type tags are “𝜒”, “func”,
1https://stackoverflow.com/questions/30544500/why-does-my-scanning-with-
readdir-not-ignore-directories

“ptr”, “struct”, and “int”, which stand for “type information is not
applicable”, “function”, “pointer”, “structure” and “int”, respectively.
Consider the 12 type tags in Figure 1(d) predicted for the 12 tokens
at line 1 in Figure 1(b). The three identifiers, getFiles, pathToScan,
and size are tagged with “func”, “ptr’ and “int”, respectively, and
all the others including built-in types char and int are tagged
with “𝜒”. Note that all the tokens will also be fed to the second
stage as well. In this first stage, Stir only predicts the type tags
for the identifier tokens. Consider opendir with its ground truth
type being “char*→ (struct { struct {..., char, char* }, struct { ... } }*)”
(Figure 1(c)). Stir identifies it as a function in this first stage and
will infer its complex type in the second stage. For many classifier-
based approaches like [3, 14, 26, 38], it will be impossible to predict
such complex types unless they appear in the training set.

• Refinement. In this second stage, given a sequence of tokens
(Figure 1(b)), together with their type tags (Figure 1(d)), Stir refines
the complex types for identifier tokens with complex type tags
(e.g., “struct” and “ptr”), as depicted in Figure 1(f). The tokens with
primitive type tags (e.g., “𝜒” and “int”) will not be refined.

Constructing structural types (i.e., type graphs) directly from
sequential tokens is non-trivial. In this case, we make use of type
expressions, each of which is a string of type symbols, as an in-
termediate representation to smooth the process of constructing
type graphs. Stir leverages a generative model with multi-head
attention to generate type expressions, as shown in Figure 1(e). For
example, the type expression for opendir is “func ptr struct struct
char ptr char eot ...”, where “eot” (end of type) marks the end of
a subexpression. Type expressions are generated in an iterative
way by using a trained sequential decision model. At each iteration,
the model generates a new type symbol for each token based on
the context (i.e., the input token sequence) and the history (i.e.,
the portions of type expressions already generated). This strategy
has the advantage of being able to update the types for correlated
identifiers simultaneously. Although simple type tokens will not be
refined in this stage, Stir still generates type expressions for them
so as to simplify the neural network architecture.

Let us consider the term “dir = readdir(d)” in Figure 1(b), for
example. Here, dir and readdir are correlated as dir may have
the same type as the return value of readdir. When Stir finds that
*dir has an array member according to the term dir->c_name, this
member can be used to update the type expression of opendir at
the next iteration. Given the type expressions constructed in Figure
1(e), Stir can finally turn them into types as shown in Figure 1(f).
During this process, a complex type is treated as a graph (or a tree
if it is non-recursive (Section 4.4.2)). For example, opendir is a
function. Therefore, the root of its type tree is a “func” node in
gray color, with its first child representing the return type, and
the remaining children representing the types of the parameters.
Type graphs are constructed from type expressions by following a
trained PCFG (Probabilistic Context Free Grammar) model. We have
designed a set of semantic rules for specifying type expressions, so
that parsing a type expression produces a type graph.

Due to the probabilistic nature of neural networks, a type expres-
sion may still be incomplete or ill-formed. Thus, we have added a
fault-tolerant mechanism to PCFG to enable Stir to recover type

https://stackoverflow.com/questions/30544500/why-does-my-scanning-with-readdir-not-ignore-directories
https://stackoverflow.com/questions/30544500/why-does-my-scanning-with-readdir-not-ignore-directories

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yaohui Peng et al.

Refinement StagePrediction Stage

BiLSTM

CRF

Multi-Head

Attention

Generative

Model

Tokens with Labels

Source

Programs

Parser

Predicted

Types
Train

Infer

FT-PCFG

Scanner

(a) Architecture of Stir

χ χ ptr χ

Forward LSTM Backward LSTM

Conditional Random Field

struct

;;dirdir**direntdirentstructstruct

(b) Prediction Stage

m1

Layers

FT-PCFG

m2

Layers

Word

Embedding
Type

Embedding

Extract &

Decode

Multi-head

Attention

Feed

Forward
Generator

Tokens Simple Types

Encoder Decoder

Type Expressions
Complex Types

(c) Refinement Stage

Figure 2: Overview of Stir. In the prediction stage, we train a "BiLSTM-CRF" model to infer type tags for tokens, and conse-

quently, determine all the simple types. In the refinement stage, we use a generation-based model to refine complex types.

graphs from incomplete or ill-formed type expressions. For exam-
ple, the type expression generated initially for pathToScan is “ptr
char int eot”, which is ill-formed. To parse it, our fault-tolerant
mechanism finds two matching productions in which either “char”
or “int” is a fault (or error). The trained PCFG model then chooses
the one that treats “int” as a fault since it has a higher probability
of being faulty for the two choices, giving rise to the type graph
depicted in Figure 1(f).

Although the ground truth for the return type of readdir is a
pointer to dirent, which is a structure containing five members
(Figure 1(c)), Stir concludes that the type of dirent is a structure
containing only d_type and d_name, the only two used in the code
snippet (Figure 1(b)). Given this usage context, the terms involved
with dirent are still well-typed, as the inferred type is a supertype
of the ground truth type. In general, an inferred type does not have
to be the same as its corresponding ground-truth type.

3 STIR: STATISTICAL TYPE INFERENCE

We describe how Stir uses two statistical type models in its two
stages to infer types in incomplete programs. Section 3.1 gives an
overview. Sections 3.2 and 3.3 focus on its two stages, respectively.

3.1 Overview

As shown in Figure 2a, Stir proceeds in two stages. The prediction
stage, as illustrated in Figure 2b, is responsible for predicting a type
tag for each token in the source code by using neural networks. The
tokens with 𝜒 or primitive type tags are simple type tokens, and
will not be refined. The refinement stage, as illustrated in Figure 2c,
uses first a generative model with multi-head attention to gener-
ate type expressions for the input tokens and then a fault-tolerant
probabilistic model to recover complex types from these type ex-
pressions. Simple type tokens are used only as the context in this
stage. These models are trained with complete programs in order
to acquire ground-truth types. When performing type inference for
incomplete programs, Stir only makes use of a scanner to extract
their tokens without the need of performing any syntactic analysis.

3.2 Predicting Simple Types

In this prediction stage, Stir tags each token in an incomplete
program with a type tag by using a BiLSTM-CRF neural network.

Given a set of simple type tags Γ = {𝜒, 𝑖𝑛𝑡, 𝑐ℎ𝑎𝑟, 𝑝𝑡𝑟, 𝑠𝑡𝑟𝑢𝑐𝑡, 𝑓 𝑢𝑛𝑐,
· · · } and a token alphabet 𝑁 , Stir aims to learn a type-prediction
function Δ : 𝑁 ∗ → Γ∗, such that |𝜔 | = |Δ(𝜔) | for each 𝜔 ∈ 𝑁 ∗.

Feature Selection. Given an incomplete program, its source
code is converted into a sequence of tokens 𝜎 = 𝜔1𝜔2 · · · . Stir
uses word embedding [30] to capture local type hints in such a
type tag prediction task. As a result, the initial token sequence is
transformed into a sequence of vectors 𝑅𝜎 = 𝑅𝜔 1𝑅𝜔 2 · · · , where
𝑅𝜔𝑖 is the vector representation of 𝜔𝑖 . By constructing a lookup
table, 𝑅𝜔𝑖 can be retrieved using the index of 𝜔𝑖 in 𝑁 .

Neural Networks. Stir uses neural networks to capture con-
textual and global type hints. Unlike natural languages, the token
sequences in programs are typically very long and difficult to split
without destroying their contexts. We choose BiLSTM [16], which
performs better than the traditional BiRNN [41] in capturing long-
term dependencies to model contextual type hints. In addition, we
use CRF (Conditional Random Field) [21], which aims at maximiz-
ing the probability of an entire sequence of tokens, to capture global
type dependencies such as the declaration and uses of an identifier.
By combining BiLSTM and CRF, Stir aims to predict type tags ac-
curately for a sequence of input tokens. Compared to transformer
models, our neural network model is more efficient in terms of run-
ning performance. In addition, adding attention mechanism, which
is an important component in transformers, does not provide extra
benefit in terms of accuracy, as illustrated in section 4.1.

As depicted in Figure 2b, a token sequence is fed into a bi-
directional LSTM. The context of each token is modeled from the
forward and backward LSTMs and sent to the CRF layer. At each
step, each token 𝑥𝑖 in the sequence is fed into a BiLSTM model:

𝑧𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (−→𝑧𝑖 ,←−𝑧𝑖)
−→𝑧𝑖 = 𝐿𝑆𝑇𝑀 (𝑥𝑖 ,−→𝑧 𝑖−1;

−→
𝜃)

←−𝑧𝑖 = 𝐿𝑆𝑇𝑀 (𝑥𝑖 ,←−𝑧 𝑖−1;
←−
𝜃)

(1)

where 𝑧𝑖 , together with the forward −→𝑧𝑖 and backward ←−𝑧𝑖 , is the
information obtained for 𝑥𝑖 . Note that

−→
𝜃 and

←−
𝜃 are the training

parameters of the forward and backward LSTMs, respectively.
A sequential CRF is used at the next layer of the bidirectional

LSTM. This layer is responsible for decoding the type labels for the

Statistical Type Inference for Incomplete Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Weight Score

Multi-Head Attention
Feed

Forward

m1

Layers

m2

Layers

Current State

Update

Encoder

Decoder

iteration 0 1 2 3 4 5 6 7 8

struct

dirent

*

dir

;

χ χ χ χ χ χ χ χ χ

struct char ptr char eot eot χ χ χ

χ χ χ χ χ χ χ χ χ

ptr struct char ptr char eot eot eot χ

χ χ χ χ χ χ χ χ χ

iteration 0 1 2 3 4 5 6 7 8

struct

dirent

*

dir

;

χ χ χ χ χ χ χ χ χ

struct char ptr char eot eot χ χ χ

χ χ χ χ χ χ χ χ χ

ptr struct char ptr char eot eot eot χ

χ χ χ χ χ χ χ χ χ

LSTM

Generator

LSTM

Generator

Type ExpressionsType Expressions

struct

dirent

*

dir

;

struct

dirent

*

dir

;

Figure 3: Generating type expressions based on the encoder-decoder architecture. The encoder leverages multi-head attention

to gather the context information from input tokens. The decoder considers each token at each iteration and generates a new

type symbol (if needed), based on the weight scores from the encoder and the portions of type expressions already generated.

entire token sequence and obtaining a type label for each token. For
each token, there are a total of |Γ | potential states (i.e., type tags). If
𝑍 = 𝑧1𝑧2 · · · 𝑧𝑛 is an input sequence and Ω is the set for all possible
label sequences, then |Ω | = |Γ |𝑛 . Let 𝑌 = 𝑦1𝑦2 · · ·𝑦𝑛 be the ground-
truth label sequence of 𝑍 and 𝑌 ′ = 𝑦′1𝑦

′
2 · · ·𝑦

′
𝑛 be one possible label

sequence in Ω. The conditional probability 𝑝 (𝑌 |𝑍 ;𝑊,𝑏) represents
the probability of𝑌 among all possible sequences. Let𝜓𝑖 (𝑌 ′, 𝑌 , 𝑍) =
𝑒𝑥𝑝

(
𝑊𝑇

𝑌 ′,𝑌 𝑧𝑖 ∔ 𝑏𝑌 ′,𝑌

)
. Then 𝑝 (𝑌 |𝑍 ;𝑊,𝑏) is calculated as follows:

𝑝 (𝑌 |𝑍 ;𝑊,𝑏) =
∏𝑛

𝑖=1𝜓𝑖 (𝑦𝑖−1, 𝑦𝑖 , 𝑍)∑
𝑌 ′∈Ω

∏𝑛
𝑖=1𝜓𝑖

(
𝑦′𝑖−1, 𝑦′𝑖 , 𝑍

) (2)

Here,𝑊𝑇
𝑌 ′,𝑌 𝑧𝑖 represents the weight vector, and 𝑏𝑌 ′,𝑌 the offset

vector. CRF applies the maximum conditional relief estimation
during training. Given a training set (𝜎,𝑌), the training process
aims to maximize the conditional probability 𝑝 (𝑌 |𝑍 ;𝑊,𝑏) for the
ground truth 𝑌 and reduce the probability of other sequences in Ω.
Given a sequence of tokens, we will then obtain a corresponding
sequence of type tags with the highest probability in Ω.

3.3 Refining Complex Types

In the refinement stage, Stir infers complex types for tokens with
complex type tags (e.g., “struct”, “func” and “ptr”). As shown in
Figure 2c, Stir takes as input a sequence of tokens with their type
tags and produces as output a type expression for each token by
using a generative model with multi-head attention. We propose a
probabilistic model, FT-PCFG (Fault-Tolerant Probabilistic Context
Free Grammar), to convert a type expression into a type graph.

Type Expression. Given a set of type symbols Γ = Γ ∪ {𝑒𝑜𝑡}, a
type expression 𝜎 ∈ Γ∗ for a type (including 𝜒) is a string of type
symbols. Stir uses type expressions, which are specified by the at-
tribute grammar given in Table 1, as an intermediate representation
for specifying types. 𝐸 (the start symbol),𝑇 , and 𝑃 are non-terminals
and 𝑝𝑡𝑟 , 𝑎𝑟𝑟𝑎𝑦, 𝑠𝑡𝑟𝑢𝑐𝑡 ,𝑢𝑛𝑖𝑜𝑛, 𝑓 𝑢𝑛𝑐 , 𝑒𝑛𝑢𝑚, 𝑡𝑦𝑝𝑒𝑁𝑎𝑚𝑒 , 𝑒𝑜𝑡 and 𝜒 are
terminals. A type expression 𝐸 can be a pointer (Prod 1), an array
(Prod 2), a structure (Prod 3), a union (Prod 4), a function (Prod 5),
an enumeration (Prod 6), or a primitive or simple type (Prod 7). 𝑇
2𝑡𝑦𝑝𝑒𝑁𝑎𝑚𝑒 represents a primitive type, e.g., char, int, or float defined in the C99
standard. https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

Table 1: Attribute grammar for type expressions.

No. Production Semantic Rule

1 𝐸 → 𝒑𝒕𝒓 𝐸1 𝑒𝑜𝑡 𝐸.𝑡𝑦𝑝𝑒 :=𝑚𝑘_𝑝𝑡𝑟 (𝐸1 .𝑡𝑦𝑝𝑒)
2 𝐸 → 𝒂𝒓𝒓𝒂𝒚 𝐸1 𝑒𝑜𝑡 𝐸.𝑡𝑦𝑝𝑒 :=𝑚𝑘_𝑎𝑟𝑟𝑎𝑦 (𝐸1 .𝑡𝑦𝑝𝑒)
3 𝐸 → 𝒔𝒕𝒓𝒖𝒄𝒕 𝑇 𝑒𝑜𝑡 𝐸.𝑡𝑦𝑝𝑒 :=𝑚𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 (𝑇 .𝑡𝑦𝑝𝑒𝑠)
4 𝐸 → 𝒖𝒏𝒊𝒐𝒏 𝑇 𝑒𝑜𝑡 𝐸.𝑡𝑦𝑝𝑒 :=𝑚𝑘_𝑢𝑛𝑖𝑜𝑛(𝑇 .𝑡𝑦𝑝𝑒𝑠)
5 𝐸 → 𝒇𝒖𝒏𝒄 𝐸1 𝑇 𝑒𝑜𝑡 𝐸.𝑡𝑦𝑝𝑒 :=𝑚𝑘_𝑓 𝑢𝑛𝑐 (𝐸1 .𝑡𝑦𝑝𝑒,𝑇 .𝑡𝑦𝑝𝑒𝑠)
6 𝐸 → 𝒆𝒏𝒖𝒎 𝑇 𝑒𝑜𝑡 𝐸.𝑡𝑦𝑝𝑒 :=𝑚𝑘_𝑒𝑛𝑢𝑚(𝑇 .𝑡𝑦𝑝𝑒𝑠)
7 𝐸 → 𝑃 𝐸.𝑡𝑦𝑝𝑒 := 𝑃 .𝑡𝑦𝑝𝑒
8 𝑇 → 𝑇1 𝐸 𝑇 .𝑡𝑦𝑝𝑒𝑠 := 𝑇1 .𝑡𝑦𝑝𝑒𝑠 | | 𝐸.𝑡𝑦𝑝𝑒
9 𝑇 → 𝜖 𝑇 .𝑡𝑦𝑝𝑒𝑠 := []
10 𝑃 → 𝒕𝒚𝒑𝒆𝑵𝒂𝒎𝒆 𝑃 .𝑡𝑦𝑝𝑒 :=𝑚𝑘_𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 (𝑡𝑦𝑝𝑒𝑁𝑎𝑚𝑒.𝑙𝑖𝑡𝑒𝑟𝑎𝑙)2

11 𝑃 → 𝜒 𝑃 .𝑡𝑦𝑝𝑒 :=𝑚𝑘_𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 (𝜒)

may yield a sequence of 𝐸’s including the empty string 𝜖 (Prods 8
and 9), where “| |” is the list concatenation operator. 𝑃 yields all
possible primitive types (Prod 10) and a single 𝜒 (Prod 11).

The semantic rules describe how to construct type graphs for
their associated productions. 𝐸 has a synthesized attribute, 𝑡𝑦𝑝𝑒 , rep-
resenting a graph node.𝑇 has a synthesized attribute, 𝑡𝑦𝑝𝑒𝑠 , which
maintains a list of graph nodes. 𝑃 has a synthesized attribute, 𝑡𝑦𝑝𝑒 ,
which represents a graph node constructed by𝑚𝑘_𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 () for
a primitive type stored in 𝑡𝑦𝑝𝑒𝑁𝑎𝑚𝑒 or 𝜒 . The other graph node
constructors are:𝑚𝑘_𝑝𝑡𝑟 builds a pointer node with an outgoing
edge to 𝐸1 .𝑡𝑦𝑝𝑒 ,𝑚𝑘_𝑎𝑟𝑟𝑎𝑦 builds an array node with an outgoing
edge to 𝐸1 .𝑡𝑦𝑝𝑒 ,𝑚𝑘_𝑠𝑡𝑟𝑢𝑐𝑡 builds a structure node with an outgo-
ing edge to each node in 𝑇 .𝑡𝑦𝑝𝑒𝑠 ,𝑚𝑘_𝑢𝑛𝑖𝑜𝑛 builds a union node
with an outgoing edge to each node in 𝑇 .𝑡𝑦𝑝𝑒𝑠 ,𝑚𝑘_𝑒𝑛𝑢𝑚 builds a
enumeration node with an outgoing edge to each node in 𝑇 .𝑡𝑦𝑝𝑒𝑠 ,
and finally,𝑚𝑘_𝑓 𝑢𝑛𝑐 builds a function node with the first outgoing
edge to 𝐸1 .𝑡𝑦𝑝𝑒 and an outgoing edge to each node in 𝑇 .𝑡𝑦𝑝𝑒𝑠 .

Consider malloc() in Figure 1, with its type being “𝑖𝑛𝑡 →
(𝑣𝑜𝑖𝑑∗)”. We can obtain the following type expression:
𝐸 ⇒ 𝑓 𝑢𝑛𝑐 𝐸 𝑇 𝑒𝑜𝑡 ⇒ 𝑓 𝑢𝑛𝑐 𝑝𝑡𝑟 𝐸 𝑒𝑜𝑡 𝑇 𝑒𝑜𝑡

⇒𝑓 𝑢𝑛𝑐 𝑝𝑡𝑟 𝑃 𝑒𝑜𝑡 𝑇 𝑒𝑜𝑡 ⇒ 𝑓 𝑢𝑛𝑐 𝑝𝑡𝑟 𝑣𝑜𝑖𝑑 𝑒𝑜𝑡 𝑇 𝑒𝑜𝑡

⇒𝑓 𝑢𝑛𝑐 𝑝𝑡𝑟 𝑣𝑜𝑖𝑑 𝑒𝑜𝑡 𝑇 𝐸 𝑒𝑜𝑡 ⇒ 𝑓 𝑢𝑛𝑐 𝑝𝑡𝑟 𝑣𝑜𝑖𝑑 𝑒𝑜𝑡 𝐸 𝑒𝑜𝑡

⇒𝑓 𝑢𝑛𝑐 𝑝𝑡𝑟 𝑣𝑜𝑖𝑑 𝑒𝑜𝑡 𝑃 𝑒𝑜𝑡 ⇒ 𝑓 𝑢𝑛𝑐 𝑝𝑡𝑟 𝑣𝑜𝑖𝑑 𝑒𝑜𝑡 𝑖𝑛𝑡 𝑒𝑜𝑡

(3)

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yaohui Peng et al.

The corresponding type graph in Figure 1(f) can be obtained by
applying the given semantics rules straightforwardly.

According to this attribute grammar, all simple (or primitive)
types, which are built-in types, cannot be zero-shot types. This
means that zero-shot types must be complex types.

Learning Type Expressions. We propose a sequential decision
model, which adopts the encoder-decoder architecture, to generate
type expressions for all tokens. As shown in Figure 2c, the encoder
calculates the weight scores each token for the other tokens and
the decoder determines how to generate type expressions.

The encoder tries to discover type dependencies among the
tokens by using a multi-head attention mechanism and a feed-
forward network, inspired by the Transformer [48]:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉) = 𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ) ×𝑤𝑒𝑖𝑔ℎ𝑡𝑠 (4)

where 𝑄 , 𝐾 , 𝑉 denote queries, keys, and values that are calculated
from the embedding of a token sequence. The correlation among
the tokens is stored in𝑤𝑒𝑖𝑔ℎ𝑡𝑠 , a learnable parameter matrix.

The scaled dot-product attention [48] ℎ𝑒𝑎𝑑𝑖 is computed by:

ℎ𝑒𝑎𝑑𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇√︁
𝑑𝑘

)𝑉 (5)

where 𝑑𝑘 denotes the dimension of queries 𝑄 and keys 𝐾 .
Different kinds of type dependencies exist. For example, the type

expression of a variable with a structure type may be affected by
one member variable, whose declaration can be anywhere in the
program, yielding relatively a long-term dependency. On the other
hand, the dependency between dir and readdir in Figure 1(a)
is relatively short. In our type inference setting, the intuition for
using multi-head attention is that by employing ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ to
attend to different parts of a program, these dependencies can be
discovered by multiple heads. The feed-forward network is made up
of two linear transformations with a ReLU activation. The objective
is to fuse the type information of the other tokens into each token
based on the attention weights. By stacking several such blocks
(with each consisting of multi-head attention and the feed-forward
network), the encoder can capture hierarchical dependencies.

The decoder requires multiple rounds of generation. At each
round, the state is built based on generated expressions. As a result,
we redesign the decoder instead of using an off-the-shelf Trans-
former model directly. The decoder takes as input a sequence of
tokens with their type tags inferred in the prediction stage, to-
gether with their weights acquired by the encoder, and produces
as output the inferred type information for each token. Note that
the type expressions generated for simple type tokens are ignored.
The decoder handles all tokens simultaneously in parallel. For each
type expression, its type symbols are generated iteratively. At each
iteration, the decoder tries to add a new type symbol based on the
current state 𝑙𝑖 :

𝑙𝑖 = 𝐿𝑆𝑇𝑀 (𝑥𝑖 , 𝑙𝑖−1;𝜃)
𝑥𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑤, 𝑡)

(6)

Here, 𝑤 represents the entire input token sequence, 𝑡 represents
the latest generated type symbols for the tokens in 𝑤 , 𝑥𝑖 is the
concatenation of 𝑤 and 𝑡 , and 𝜃 is a trainable parameter. At the
first iteration, the type expression for each token is empty and the
type tag obtained for each token in the prediction stage is used in

defining 𝑡 . Based on the current state 𝑙𝑖 , the decisions 𝑑 ∈ Γ |𝑤 | for
all the input tokens made by the decoder are given by:

𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓 (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦 (𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑙𝑖)))) (7)

where 𝑓 is a dense layer and𝑤𝑒𝑖𝑔ℎ𝑡𝑠 is the output of the encoder.
Specifically, if 𝑑 𝑗 is a decision made for token𝑤 𝑗 in𝑤 , the decoder
appends 𝑑 𝑗 as a new type symbol to its type expression.

Figure 3 illustrates how the decoder generates the type expres-
sions for𝑤 = (“struct”, “dirent”, “*”, “dir”, “;”) simultaneously
in nine iterations. At iteration 0, 𝑡 = (“𝜒”, “struct”, “𝜒”, “ptr”, “𝜒”),
which represents the sequence of type tags inferred for 𝑤 in the
prediction stage. Given 𝑤 and the updated 𝑡 as shown at each of
the next eight iterations, the decoder generates and appends a new
type symbol to the type expression for each token. At the end of the
last iteration, all redundant trailing 𝜒 ’s (according to the attribute
grammar in Table 1) are removed. Note that the type expressions
for tokens with non-complex types are ignored.

Type Graph Construction. Given a well-formed type expres-
sion, Stir can construct its type graph straightforwardly by apply-
ing the semantic rules in Table 1. To handle a type expression that
is incomplete or ill-formed, we propose a probabilistic model with
a fault-tolerant mechanism, FT-PCFG (Fault-Tolerant Probabilistic
Context Free Grammar), to construct its type graph.

Let 𝐺 = (𝑉𝑁 ,𝑉𝑇 , 𝑃, 𝑆) be a context-free grammar, where 𝑉𝑁 , 𝑉𝑇
and 𝑃 are sets of non-terminals, terminals, and productions, respec-
tively, and 𝑆 is the start symbol. The fault-tolerant grammar of𝐺 is
a context-free grammar 𝐹𝑇 (𝐺) = (𝑉𝑁 ,𝑉𝑇 ∪ {𝑒𝑟𝑟 }, 𝑃𝐹𝑇 , 𝑆), where
𝑃𝐹𝑇 = 𝑃 ∪ {𝐴 → 𝛼 𝑒𝑟𝑟 𝛽 | 𝐴 → 𝛼 𝛽 ∈ 𝑃, 𝛼 ∈ (𝑉𝑁 ∪ 𝑉𝑇)+, 𝛽 ∈
(𝑉𝑁 ∪ 𝑉𝑇)∗}. The new terminal 𝑒𝑟𝑟 represents an unexpected
string in a type expression. If (𝐸 → 𝒑𝒕𝒓 𝐸 𝑒𝑜𝑡) ∈ 𝑃 , for exam-
ple, then productions (𝐸 → 𝒑𝒕𝒓 𝑒𝑟𝑟 𝐸 𝑒𝑜𝑡), (𝐸 → 𝒑𝒕𝒓 𝐸 𝑒𝑟𝑟 𝑒𝑜𝑡),
and (𝐸 → 𝒑𝒕𝒓 𝐸 𝑒𝑜𝑡 𝑒𝑟𝑟) are all in 𝑃𝐹𝑇 . By introducing such new
productions, 𝐹𝑇 (𝐺) may become ambiguous. To resolve ambigu-
ity, the probability of each production in 𝐹𝑇 (𝐺) should be trained
before it can be used to parse ambiguous type expressions.

After converting 𝐹𝑇 (𝐺) into Chomsky Normal Form (CNF) [8],
we train FT-PCFG via the inside-outside algorithm [9] and the
expectation-maximization algorithm [32]. The training data of FT-
PCFG are the type expressions generated from all the training
programs. Given a CNF production 𝑟 , let 𝜙 (𝑟) ∈ R𝑑 be its one-hot
vector representation, where d is the size of the production set.
Let 𝑣 ∈ R𝑑 be a vector storing the probabilities 𝜓 (𝑟) of all the
productions 𝑟 , which are initially identical, in 𝐹𝑇 (𝐺). Given a parse
tree 𝑡 , its probability𝜓 (𝑡) is defined as follows:

𝜓 (𝑡) =
∏
𝑟 ∈𝑡

𝜓 (𝑟) =
∏
𝑟 ∈𝑡

𝑒𝑥𝑝{𝑣 · 𝜙 (𝑟)} = 𝑒𝑥𝑝{
∑︁
𝑟 ∈𝑡

𝑣 · 𝜙 (𝑟)} (8)

There may be several different parse trees for a given type expres-
sion, 𝑥1 . . . 𝑥𝑛 , that contains 𝑒𝑟𝑟 . Let 𝜏 be the the set of all its possible
parse trees. The probability of one possible parse tree is:

𝑝 (𝑡 |𝑥1 . . . 𝑥𝑛) =
𝜓 (𝑡)∑
𝑡 ∈𝜏 𝜓 (𝑡)

(9)

When training PCFG, if a parse tree 𝑡 yields 𝑥1 . . . 𝑥𝑛 , the parameter
𝑣 will be adjusted by the expectation-maximization algorithm to
maximize the likelihood estimation of its probability 𝑝 (𝑡 |𝑥1 . . . 𝑥𝑛).

Statistical Type Inference for Incomplete Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

With multiple training type expressions generated from the train-
ing programs, the objective of training PCFG is to maximize the
joint probability of parse trees for all type expressions. Given a
type expression, the trained FT-PCFG model is used to find the
parse tree with the maximum probability. The type graphs are then
constructed by applying the semantic rules in Table 1.

4 EVALUATION

We demonstrate that Stir advances the state of the art in perform-
ing type inference in incomplete C programs.We have considered C,
since compared with other programming languages, C (as a strongly
typed language) requires strict type checking, which makes type
inference in a program challenging when the program is incom-
plete or ill-formed. If Stir can handle effectively type inference for
incomplete programs written in C, Stir is also expected to work
well for other programming languages.

We address the following three research questions:
• RQ1. Is Stir effective in predicting type tags?
• RQ2. How effectively can Stir infer complex types?
• RQ3. Is Stir still effective on zero-shot types?

As all simple (or primitive) types must have been seen during
the training stage (Table 1), zero-shot types are all complex types.

To the best of our knowledge, Stir is the first to infer com-
plex types (including zero-shot types) in incomplete or ill-formed
programs with an infinite type vocabulary.

Dataset. We collect source programs from GNU3. The dataset
contains 6637 source files, with 4348 of these source files containing
no more than 1000 tokens. We have modified Clang4, a frontend of
LLVM5, to parse the source files to acquire the ground-truth types
for the identifies appearing in these programs.

Table 2: Dataset characteristics.

Category #Projects #Files #Tokens #Types #Zero-shot Types

Training Set 98 3506 1042196 6246 -
Test Set 77 842 253108 2551 834

Table 2 gives more details of the dataset. All the programs are
randomly divided into a training set and a test set. The ratio of
the training programs over the test programs is 4:1. In both cases,
the programs with more than 1,000 tokens are dropped, as Stir is
designed to handle (small) incomplete programs or code snippets.
The entire dataset contains a total of 7080 distinct types: the train-
ing set contains 6246 distinct types and the test set contains 2551
distinct types (with some types appearing in both sets). There are
834 zero-shot types, implying that over one-third of the types that
appear in the test set do not also appear in the training set.

Table 3 shows that the source-code files used in both the train-
ing and test sets have been selected to simulate the code snippets
typically found in programming forums in terms of code sizes.

Table 4 gives top-10 types in the training and test sets.

3http://www.gnu.org/
4http://clang.llvm.org/
5http://llvm.org/

Table 3: File size distribution (as revealed by the number of

files containing the number of tokens in a given interval).

Category ≤ 250 251 ∼ 500 501 ∼ 750 751 ∼ 1000 Total

Training Set 1979 737 466 324 3506
Test Set 474 173 113 82 842

Table 4: Top-10 types in the dataset.

Training Set Total Test Set Total
int 2342241 int 383128

char* 358127 char* 79492
long 147771 long 43503
struct* 89672 struct* 27707
double 68695 double 17996
void* 45975 void* 13000
int* 45041 int* 11602
char 28434 char 7994
char** 21854 char[] 6232
char[] 21341 struct {int, char*, struct*}* 5296

Baseline. In practice, most incomplete programs are ill-formed,
as they contain unresolvedmacros and undeclared identifiers. There-
fore, existing type inference approaches that rely onwhole-program
syntactic analysis cannot be used as baselines. PsycheC [29] can
handle ambiguous yet well-formed incomplete C programs, but
it cannot infer types in ill-formed programs (caused by, e.g., un-
resolved macros). DeepTyper [14], on the other hand, is the only
one that requires no syntactic analysis but applies NLP to infer
types in incomplete programs, which are interpreted as plain text.
However, as a classifier, DeepTyper is limited to inferring only type
tags. Nevertheless, for incomplete programs, DeepTyper represents
a state-of-the-art baseline for comparison purposes.

To evaluate the effectiveness of Stir in inferring simple types in
its prediction stage, we compare Stir with DeepTyper. To evaluate
the effectiveness of Stir in inferring complex types (including zero-
short ones) in its refinement stage, we resort to graph similarity.

Training. The neural networks in Stir are implemented in Py-
Torch [35] as the back-end. As the training parameters of DeepTyper
are not provided [14], we have consulted TypeWriter [38], which is
also a deep-learning-based approach, to set up these parameters, as
listed in Table 5. Since the input sequences are relatively long, the
batch size is set to 16 to avoid out of GPU memory. The learning
rate is 2 × 10−3, as is done in TypeWriter. While TypeWriter uses a
dropout rate to 0.25, we use 0.5 in order to prevent our model from
overfitting due to imbalanced data (Table 4). We set the L2 rate to
10−4 for the same reason. Like many other deep learning tasks, we
choose cross entropy loss and Adam optimizer [20].

In the prediction stage, as the process of training CRF is relatively
slow, the vector size used in token embedding and the hidden size
of LSTMs are set to 128 and 256, respectively. After each training

http://www.gnu.org/
http://clang.llvm.org/
http://llvm.org/

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yaohui Peng et al.

Table 5: Main training parameters.

Parameter Value
Batch size 16
Learning rate 2 × 10−3

Dropout rate 0.5
Loss function CE loss
L2 rate 10−4

Optimizer Adam [20]

epoch, we will check to see if the training model has achieved the
desired optimality. The training process will be stopped after five
epochs if the loss fluctuation is less than 1%.

Table 6: Top-10 classes of tokens classified according to the

lengths of their type expressions.

Length of a Type Expression #Tokens Percentage
1 2110696 85.74%
3 131544 5.34%
4 393902 1.60%
6 19379 0.79%
5 13237 0.54%
9 7335 0.30%
7 7294 0.30%
8 6667 0.27%
226 5320 0.22%
12 4924 0.20%

In the refinement stage, the vector size used in token embedding
is increased to 200 in order to better represent the token information.
As for multi-head attention settings (Figure 2), the number of heads
is 2. In the encoder (Figure 2(c)), the number of layers is𝑚1 = 3.
As revealed in Table 6, for over 95% tokens in the dataset, their
type expressions contain no more than 10 type symbols each. Note
that type expressions with a length of 1 represent simple types. In
another word, 85.74% of the tokens in the dataset are associatedwith
simple types. In the decoder (Figure 2(c)), the number of layers is
set to be𝑚2 = 10, which means that each type expression contains
no more than 10 symbols. This is a trade-off between accuracy and
performance.

Metrics. Stir runs its prediction stage as a classifier, similarly as
DeepTyper [14]. Therefore, we also use accuracy, the same metric
used in DeepTyper, to compare both in predicting simple types.

For its refinement stage, we evaluate Stir’s effectiveness for
inferring complex types. For incomplete programs, as explained in
Section 2, an inferred complex type does not have to be identical
to its corresponding ground-truth type. Since Stir represents com-
plex types as graphs, we use a graph similarity metric to measure
the degree of similarity between an inferred type and its ground

Table 7: The accuracy for predicting type tags.

Model Simple Type Tags Complex Type Tags All Type Tags
Stir 97.37% 92.29% 96.40%

Stir-A 90.91% 72.47% 87.36%
DeepTyper 78.50% 65.89% 76.95%

truth type. Graph Edit Distance (GED) [4] and Maximum Common
Subgraph (MCS) [5] are classical methods to calculate graph sim-
ilarity. However, computing either is known to be NP-complete
[5, 52]. In this case, we have opted to use a more computationally
efficient approach, Graph Kernel [27, 34], to measure graph simi-
larity. Specifically, we use Weisfeiler-Lehman graph kernel [43], a
state-of-the-art graph kernel, to evaluate our refinement stage.

Computing Platform. We have conducted all our experiments
on a Windows 10 desktop equipped with an 8-core Intel i7-7500
CPU of 3.40 GHzwith 32GBmemory, accelerated by a 12GBNVIDIA
GeForce RTX 2080Ti GPU.

4.1 RQ1: Predicting Type Tags

We evaluate the effectiveness of Stir in predicting type tags, and
consequently, inferring simple types in incomplete programs. We
conduct three experiments, with each running an independent
neural network model to predict the type tags for the test programs
evaluated. Our results are reported in Table 7. The Stir model is
the BiLSTM-CRF model adopted by Stir in its prediction stage.
The DeepTyper model is built by following [14]. Since DeepTyper
uses an attention layer to capture the relations among the tokens,
we have also designed a so-called Stir-A model to investigate
the impact of attention on predicting simple types, by adding one
attention layer to our BiLSTM-CRF model.

For each model, we translate each source file in the test set into a
sequence of tokens and then predict their type tags. In Table 7, we
can see the accuracy achieved by each model in predicting simple
type tags, complex type tags, and all the type tags altogether.

Based on these results, three observations are in order:
• Stir predicts type tags well, achieving an accuracy of 97.37%,
92.29%, and 96.40% for simple type tags, complex type tags and
all the type tags, respectively. To put these results in perspective,
JSNice [40] achieves an overall accuracy of 63.4% and Typilus
[1] achieves an overal accuracy of 89%. However, as described in
Section 1, these existing approaches rely on whole-program syn-
tactic analysis and are thus inapplicable to incomplete programs.
Therefore, we conclude that Stir advances the state of the art in
predicting type tags for incomplete programs.
• Stir outperforms the baseline, DeepTyper, by increasing its ac-
curacy by about 20% in absolute terms in all the three cases.
Note that DeepTyper performs better here than in its original
paper [14], where DeepTyper is reported to achieve an accuracy
of 71.1% on its top-10 common types and of 29.6% on the other
types. This is due to the fact that the number of distinct type
tags in this paper is relatively smaller. As for Stir-A, adding one
attention layer as in DeepTyper actually lowers the accuracy of
Stir. This is because CRF in Stir employs a joint probability
mechanism, which captures global type hints more effectively.

Statistical Type Inference for Incomplete Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

As a result, adding an attention layer will confuse CRF with its
learned weights rather than provide extra information. That is
why Stir does not choose transformer models to predict type
tags, as the attention mechanism plays an important role in trans-
former models. However, Stir-A still outperforms DeepTyper
for all the three cases.
• For all the three classifier-based models evaluated, predicting
complex type tags is harder than predicting simple type tags.
This decrease in accuracy is expected, as some sophisticated
clues about complex types cannot be easily found by relatively
simple neural networks adopted in classifiers. Nevertheless, Stir
outperforms DeepTyper by achieving an increase of 26.4% in
accuracy in absolute terms on predicting complex type tags. This
advantage shows again that CRF (adopted by Stir) is more effec-
tive than a single attention layer in finding global type hints.

4.2 RQ2: Inferring Complex Types

We evaluate the effectiveness of Stir in refining the actual complex
types for the tokens with complex type tags. To verify the impact
of the first stage on inferring complex types, we compare Stir with
its three variants, Stir-OT, Stir-DT, and Stir-GT. Stir-OT differs
from Stir in that Stir-OT assumes that the type tags for all the
tokens are “𝜒”. Stir-DT uses the type tags generated by DeepTyper
[14]. Stir-GT is the oracle that uses the ground-truth type tags.

We compare these four methods by using graph (or type) sim-
ilarity. Given a method, type similarity measures the degree of
similarity between a predicted complex type and its corresponding
ground-truth type as described earlier. Our results are reported in
Table 8. There are three categories of complex types. The “Pointer”
category includes pointer and array types since arrays are treated as
pointers in the C programming language. The “Structure” category
contains structure types, union types and enumeration types. The
“Function" category contains function types only. Note that all the
zero-shot types in the test programs are also included.

Stir is highly effective when compared to Stir-GT, the oracle
method that uses the ground-truth types. However, Stir-OT and
Stir-DT are much less effective than Stir.

Stir achieves a macro average of 77.36%. An important factor
that prevents Stir from improving its graph similarity further is
that Stir can often infer only a strictly subset of the members of a
ground-truth complex type based on how its variables are used in a
small code snippet, as explained in Section 2. To put our results in
perspective, graph generation tools in molecular prediction such as
GraphAF [44], GraphDF [25] and GraphEBM [24] report their graph
similarity scores as 66% , 65% , and 67%, respectively. Therefore,
Stir is effective in inferring complex types measured in terms of
graph similarity, especially since zero-short types are also included.

By examining the results for Stir and its three variants Stir-OT,
Stir-DT and Stir-GT, we see that the quality of their input type
tags affects their ability in inferring complex types. Without any
type information in the input type tags used, Stir-OT achieves a
macro average of 43.41%, as some tokens (e.g., char and int) carry
type information themselves. Stir-DT achieves a higher macro
average of 59.71% by using the type tags predicted by DeepTyper.
Stir-GT performs better than Stir as expected, achieving a macro
average of 78.85%, because it uses the ground-truth type tags.

Table 8: Graph similarity for complex types.

Model Pointer Structure Function Macro Avg
Stir 76.13% 79.34% 80.34% 77.36%

Stir-OT 43.89% 40.15% 43.48% 43.41%
Stir-DT 63.39% 49.82% 59.82% 59.71%
Stir-GT 77.68% 82.59% 80.75% 78.85%

Based on our experimental results, we see that Stir performs
effectively in inferring complex types for code snippets.

4.3 RQ3: Inferring Zero-Shot Types

Stir applies a generative model to generate type expressions that
represent type graphs. Thus, Stir is expected to infer zero-shot
types. In Table 9, we report our results from applying Stir and its
two variants Stir-DT and Stir-GT (introduced in Section 4.2) to
infer zero-short types. Note that we do not consider Stir-OT, as
Stir ignores the tokens tagged with 𝜒 in Stir’s refinement stage.

Table 9: Graph similarity for zero-shot types.

Model Pointer Structure Function Macro Avg
Stir 60.65% 61.64% 56.21% 59.61%

Stir-DT 48.17% 37.47% 29.80% 41.10%
Stir-GT 61.72% 62.46% 56.38% 60.39%

Stir is highly effective when comparedwith Stir-GT, which uses
the ground-truth types. However, Stir-DT is much less effective.

Let us analyze the performance of Stir in detail. Stir achieves
a macro average of 59.61%, which is relatively low compared to its
performance reported in Table 8. In general, the type graphs for zero-
shot types are usually larger than those for non-zero-shot types,
as small type graphs have a higher possibility of being included
in the training set. The decoder generates a type expression by
making a sequence of decisions. At each iteration, the probability
of generating and appending a wrong type symbol to the type
expression increases without the help of learned type knowledge. In
addition, the possibility of generating awrong type symbol becomes
amplified for a long type expression. Therefore, the rear part of a
type expression is mostly unmatched with the corresponding rear
part in its ground-truth type expression. This explains why the
graph similarity for zero-shot types is lower than that for non-zero-
shot types. On the other hand, the front part of a type expression
may have a good chance to match with the front part of its ground-
truth type expression (according to the attribute grammar given in
Table 1). Therefore, Stir can still succeed in generating similar type
graphs for zero-shot types as demonstrated in this paper. Note that
the similarity for function types is the lowest among the three type
categories. This is because many GNU functions return a pointer to
a structure (e.g., opendir in Figure 1), making the type expressions
for their function types relatively long.

4.4 Discussions

We describe the benefits and limitations of Stir and how we have
mitigated threats to validity in our design and implementation.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yaohui Peng et al.

4.4.1 Applications. We envisage that Stir can be incorporated
into some existing software engineering frameworks [12, 13, 15]
as an independent tool to improve their effectiveness in handling
their tasks. Many machine-learning-based software engineering
tasks [2, 40] retrieve code snippets from programming forums such
as Stack Overflow as training data. For example, code search [6,
45, 46, 50] uses such incomplete programs (as plain text) to learn
the association between source code and a query. Given its high
accuracy in type tag prediction, Stir can be used to provide precise
type information in the training code to improve its quality.

Table 10: Average inference time of Stir (ms).

Prediction Refinement Overall

80 1829 1909

Stir can infer the types in under two seconds per file on average
(Table 10). So Stir can be used in real-time scenarios where whole-
program analysis is not applicable. For example, a lightweight editor
can perform code completion on partly written code based on the
complex types predicted by Stir instead of analyzing all related
source/header files as done traditionally in many IDEs.

4.4.2 Limitations. Stir can be improved along two directions:

Recursive Types. Currently, Stir does not support recursive
types. Stir uses type expressions, which are finite strings, to rep-
resent non-recursive complex types. In order to express recursive
types, which are infinite structures, some additional machineries
such as the 𝜇 operator in type theory may be introduced into the
current attribute grammar used for specifying type expressions.
However, the idea of working with type expressions is to reduce
the search space for complex types. The grammar is expected to
be as simple as possible. Combining Stir and a rule-based type
inference approach may be a solution for handling recursive types.

Error Recovering. Due to the nature of machine learning, Stir
may assign tokens with wrong type tags. When generating the type
expression for a user-defined identifier token, the decoder starts
with the type tag predicted for the token as its leftmost type symbol.
Since the type expression is generated from left to right, the first
type symbol (i.e., the predicted type tag) cannot be modified. Thus,
the type tags that are predicted incorrectly in the prediction stage
cannot be fixed in the refinement stage. Let us consider an example
in Figure 4. The code snippet in Figure 4(a) is from rpc_clntout.c
of project acm-5.1 in our dataset. The ground-truth type of procs
is depicted in Figure 4(b) and its ground-truth type expression is
given in Figure 4(c). Stir predicts a wrong type tag, i.e., 𝜒 for procs
in its prediction stage. However, its refinement stage still generates a
type expression based on the context of procs. The type expression
generated (Figure 4(d)) is nearly identical to the ground-truth type
expression (Figure 4(c)) except for the first type symbol 𝜒 . Currently,
however, the erroneous 𝜒 cannot be repaired. In future work, this
kind of errors may be fixed by using a probabilistic model trained
with a set of error type expressions after the refinement stage.

4.4.3 Threats to Validity. We have mitigated these as follows:

Preprocessor. The programs in our dataset containmanymacros,
which may cause syntactic errors in their incomplete code snippets.

static

write_program(def)

definition *def;

{

...

for (proc = vp->procs; ...; ...) {

...

}

return 0;

}

static

write_program(def)

definition *def;

{

...

for (proc = vp->procs; ...; ...) {

...

}

return 0;

}

(a) Code Snippet

(c) Ground-Truth Type Expression

ptr

struct

char

ptr ptrptr

charchar

ptr

struct

char

ptr ptrptr

charchar

χ struct ptr char eot ptr char eot ptr char eot eot

ptr struct ptr char eot ptr char eot ptr char eot eot

 (d) Generated Type Expression

(b) Ground-Truth Type Graph

Figure 4: A case study for incorrect type prediction.

Given a macro definition “#define INT int”, the ground-truth
type of INT can be intuitively set to int. On the other hand, an identi-
fier may be expanded into an arbitrary string by its macro definition.
As a result, this particular identifier may have no type information.
Due to the complexity of the C preprocessor, we choose not to
handle all possible macro expansions. Instead, if an identifier x is
expanded into another identifier y, we assign the ground-truth type
of y to x. Otherwise, the ground-truth type is set to 𝜒 . Therefore,
some identifiers with macro definitions may be assigned with 𝜒 by
mistake. In addition, an identifier may have different declarations
under different configurations due to conditional compilation. Our
experiments are conducted under only one configuration.

Neural Networks. We train neural networks by following com-
monly used settings. Their parameters are not fine-tuned. For Deep-
Typer [14], its parameters are not provided in its paper. Its imple-
mentation here may not be tuned identically to the original one.

5 RELATEDWORK

We review only prior work closely related to our work.

Probabilistic Type Inference. JSNice [40] formulates the type
inference problem as CRF-based structured prediction and predicts
JavaScript type tags based on a dependency network among pro-
gram variables. Xu et al. [51] conduct probabilistic type inference

Statistical Type Inference for Incomplete Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

for Python programs by usingmultiple type hints derived from their
data-flow, attribute access, type checking predicates, and variable
names. Nate [42] utilizes logistic regression, decision tree, random
forest, etc. to locate type errors, so as to improve type inference.
These probabilistic methods, which require whole-program syntac-
tic analysis to construct data structures (e.g., dependency network
in JSNice) for type inference, cannot handle incomplete programs.

Deep-Learning-based Type Inference. Deep learning has been
widely adopted in inferring types for dynamic languages (e.g.,
Python), where types are determined at run time. SnR [11] involves
repairing the program before performing type inference, while
Huang et al. [17] utilize prompt-based language models for type
inference. Some recent efforts focus on some specific types like
functions. NL2Type [26] and DLTPy [3] use information like func-
tion names, comments, parameter names and return expressions
to infer function signatures. TypeWriter [38] extends a probabilis-
tic model with recurrent neural networks to infer the return and
argument types for functions from partially annotated Python pro-
grams. Other approaches use neural networks to predict primitive
types and user-defined types, where types are treated as tags. Deep-
Typer [14] uses a sequence-to-sequence model to predict type tags.
LambdaNet [49] makes use of GNNs (Graph Neural Networks) to
predicts type tags in TypeScript. Typilus [1] implements a GNN
to map variables to their type embeddings, which are later used
to find the nearest types in a type space. HiTyper [36] is a rule-
based type inference framework where neural networks are used
to recommend type tags. Type4Py [31] employs a hierarchical neu-
ral network (HNN) to infer types, which are then translated into
vectors by a deep similarity learning.

Among these earlier efforts, DeepTyper is the only one that
requires no syntactic analysis. The common idea behind the others
is to use syntactic analysis to construct dependency information
(e.g., AST in Type4Py and type dependency graph in HiTyper)
from the source program and then apply deep learning to learn the
association between types and the dependency information. These
approaches are inapplicable to incomplete programs.

Table 11: Type vocabularies in inferring zero-shot types.

Approach Type Representation Type Vocabulary Size

DeepTyper [14] Type Tag 11830
DLTPy [3] Type Tag 1000

NL2Type [26] Type Tag 1000
LambdaNet [49] Type Tag 100
TypeWriter [38] Type Tag 1000

Typilus [1] Type Tag Unlimited
Type4Py [31] Vector Unlimited
HiTyper [36] Structural Type Fixed

SnowWhite [22] Linear Representation Unlimited
Stir Type Graph Unlimited

As revealed in Table 2, nearly one-third types in the test set are
zero-shot types. Therefore, how to infer zero-shot types represents

an important problem faced by machine-learning-based type in-
ference, as zero-shot types are actually out of the vocabulary in
the training data. We survey the type vocabularies used recently in
Table 11. DeepTyper [14], DLTPy [3], NL2Type [26], LambdaNet
[49] and TypeWriter [38] regard types as discrete tags by using
finite type vocabularies. Therefore, these methods cannot handle
zero-shot types, which are out of their vocabularies. Typilus [1]
maintains an open vocabulary, which is a map from variables to
their type tags. Once a variable is manually confirmed (e.g., by
developers) with a type that is outside its vocabulary, this associ-
ation is updated. Typilus use this strategy to avoid retraining for
unseen types. Type4Py [31] uses known types to train a similarity
neural network so as to map types to vectors. Although Type4Py
can find the vector representations for zero-shot types, it does not
reveal their structural details. HiTyper [36], on the other hand, uses
structural type representations, as it combines rule-based infer-
ence and neural networks. Although HiTyper employs a rule-based
framework, the size of its type vocabulary is fixed. If HiTyper’s
neural network recommends a zero-shot type, it will find a similar
known type from the vocabulary as an alternative. SnowWhite
[22] adopts a sequence-to-sequence model to recover complex types
for function parameters and return values inWebAssembly binaries.
Although binary programs follow a simple syntax, they are still
well-formed. However, SnowWhite does not predict individual
fields of aggregated types (i.e., struct, union, and enum). Therefore,
SnowWhite uses a linear representation of types, which can be
handled by classical sequence-to-sequence nerual networks. Stir
trains neural networks to generate type graphs, which are capable
of expressing all types, from incomplete programs. For zero-shot
types, Stir is still able to generate similar type graphs without
syntactic knowledge.

6 CONCLUSION

We have introduced Stir, a novel technique for predicting both
simple and complex types in incomplete programs. Our approach
offers the potential to learning information from random code files
and provides type information to programmers. Stir is expected
to provide significant benefits to many software engineering tasks,
including code search, code recommendation, code completion,
program summarization, defect prediction, and fault localization,
where type inference for arbitrary code snippets is required.

7 DATA AVAILABILITY

We have submitted an artifact, which is also available online6, to
allow Tables 7 –10 to be reproduced.

ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable comments. Thanks
also to Weijun Hong for his help on PCFG experiments. Jing Xie
is currently working at Baidu. This work is supported by National
Natural Science Foundation of China (61872272) and State Key
Laboratory of Computer Architecture (ICT, CAS) under Grant No.
CARCH A202112.

6https://github.com/StirArtifact/stir/tree/fse2023

https://github.com/StirArtifact/stir/tree/fse2023

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yaohui Peng et al.

REFERENCES

[1] Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus:
neural type hints. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 91–105.
https://doi.org/10.1145/3385412.3385997

[2] Pavol Bielik, Veselin Raychev, and Martin T. Vechev. 2016. PHOG: Probabilistic
Model for Code. In Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016 (JMLR Workshop
and Conference Proceedings, Vol. 48), Maria-Florina Balcan and Kilian Q. Wein-
berger (Eds.). JMLR.org, 2933–2942. http://proceedings.mlr.press/v48/bielik16.
html

[3] Casper Boone, Niels de Bruin, Arjan Langerak, and Fabian Stelmach. 2019. DLTPy:
Deep Learning Type Inference of Python Function Signatures using Natural
Language Context. CoRR abs/1912.00680 (2019). arXiv:1912.00680 http://arxiv.
org/abs/1912.00680

[4] Horst Bunke. 1982. Attributed Programmed Graph Grammars and Their Applica-
tion to Schematic Diagram Interpretation. IEEE Trans. Pattern Anal. Mach. Intell.
4, 6 (1982), 574–582. https://doi.org/10.1109/TPAMI.1982.4767310

[5] Horst Bunke and Kim Shearer. 1998. A graph distance metric based on the
maximal common subgraph. Pattern Recognit. Lett. 19, 3-4 (1998), 255–259. https:
//doi.org/10.1016/S0167-8655(97)00179-7

[6] Yitian Chai, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Cross-Domain
Deep Code Search with Meta Learning. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27,
2022. ACM, 487–498. https://doi.org/10.1145/3510003.3510125

[7] Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel
Levi. 2017. Fast and precise type checking for JavaScript. PACMPL 1, OOPSLA
(2017), 48:1–48:30. https://doi.org/10.1145/3133872

[8] Noam Chomsky. 1959. On Certain Formal Properties of Grammars. Inf. Control.
2, 2 (1959), 137–167. https://doi.org/10.1016/S0019-9958(59)90362-6

[9] Michael Collins. 2013. The Inside-Outside Algorithm. Lecture Notes (2013).
[10] Stephen Dolan and Alan Mycroft. 2017. Polymorphism, subtyping, and type

inference in MLsub. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017. 60–72. http://dl.acm.org/citation.cfm?id=3009882

[11] Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun. 2022. SnR:
Constraint-Based Type Inference for Incomplete Java Code Snippets. In 44th
IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022. ACM, 1982–1993. https://doi.org/10.1145/
3510003.3510061

[12] Angelo Furfaro, Teresa Gallo, Alfredo Garro, Domenico Saccà, and Andrea Tundis.
2016. ResDevOps: A Software Engineering Framework for Achieving Long-
Lasting Complex Systems. In 24th IEEE International Requirements Engineering
Conference, RE 2016, Beijing, China, September 12-16, 2016. IEEE Computer Society,
246–255. https://doi.org/10.1109/RE.2016.15

[13] Félix García, Oscar Pedreira, Mario Piattini, Ana Cerdeira-Pena, and Miguel R.
Penabad. 2017. A framework for gamification in software engineering. J. Syst.
Softw. 132 (2017), 21–40. https://doi.org/10.1016/j.jss.2017.06.021

[14] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018.
Deep learning type inference. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018. 152–162. https://doi.org/10.1145/3236024.3236051

[15] Karen Henricksen and Jadwiga Indulska. 2004. A Software Engineering Frame-
work for Context-Aware Pervasive Computing. In Proceedings of the Second
IEEE International Conference on Pervasive Computing and Communications (Per-
Com 2004), 14-17 March 2004, Orlando, FL, USA. IEEE Computer Society, 77–86.
https://doi.org/10.1109/PERCOM.2004.1276847

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.
8.1735

[17] Qing Huang, Zhiqiang Yuan, Zhenchang Xing, Xiwei Xu, Liming Zhu, and
Qinghua Lu. 2022. Prompt-tuned Code Language Model as a Neural Knowl-
edge Base for Type Inference in Statically-Typed Partial Code. In 37th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2022, Rochester,
MI, USA, October 10-14, 2022. ACM, 79:1–79:13. https://doi.org/10.1145/3551349.
3556912

[18] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. https://www.aclweb.
org/anthology/P16-1195/

[19] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. 2022. CodeFill: Multi-
tokenCode Completion by Jointly learning from Structure andNaming Sequences.
In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 401–412. https://doi.org/10.
1145/3510003.3510172

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochas-
tic Optimization. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
http://arxiv.org/abs/1412.6980

[21] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Condi-
tional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. In Proceedings of the Eighteenth International Conference on Machine Learn-
ing (ICML 2001), Williams College, Williamstown, MA, USA, June 28 - July 1, 2001.
282–289.

[22] Daniel Lehmann and Michael Pradel. 2022. Finding the dwarf: recovering precise
types from WebAssembly binaries. In PLDI ’22: 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, San Diego,
CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 410–425.
https://doi.org/10.1145/3519939.3523449

[23] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton, David Du-
venaud, Raquel Urtasun, and Richard S. Zemel. 2019. Efficient Graph Generation
with Graph Recurrent Attention Networks. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Sys-
tems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (Eds.). 4257–4267. https://proceedings.neurips.cc/paper/
2019/hash/d0921d442ee91b896ad95059d13df618-Abstract.html

[24] Meng Liu, Keqiang Yan, Bora Oztekin, and Shuiwang Ji. 2021. GraphEBM: Molec-
ular Graph Generation with Energy-Based Models. CoRR abs/2102.00546 (2021).
arXiv:2102.00546 https://arxiv.org/abs/2102.00546

[25] Youzhi Luo, Keqiang Yan, and Shuiwang Ji. 2021. GraphDF: A Discrete Flow
Model for Molecular Graph Generation. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Pro-
ceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang
(Eds.). PMLR, 7192–7203. http://proceedings.mlr.press/v139/luo21a.html

[26] Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. 2019. NL2Type: inferring
JavaScript function types from natural language information. In Proceedings of
the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle
(Eds.). IEEE / ACM, 304–315. https://doi.org/10.1109/ICSE.2019.00045

[27] Hafez Eslami Manoochehri and Mehrdad Nourani. 2020. Drug-target interaction
prediction using semi-bipartite graph model and deep learning. BMC Bioinform.
21-S, 4 (2020), 248. https://doi.org/10.1186/s12859-020-3518-6

[28] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2018. Discipline Matters:
Refactoring of Preprocessor Directives in the #ifdef Hell. IEEE Trans. Software
Eng. 44, 5 (2018), 453–469. https://doi.org/10.1109/TSE.2017.2688333

[29] Leandro T. C. Melo, Rodrigo Geraldo Ribeiro, Marcus R. de Araújo, and Fernando
Magno Quintão Pereira. 2018. Inference of static semantics for incomplete
C programs. Proc. ACM Program. Lang. 2, POPL (2018), 29:1–29:28. https:
//doi.org/10.1145/3158117

[30] Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey
Dean. 2013. Distributed Representations of Words and Phrases and their
Compositionality. In Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q.
Weinberger (Eds.). 3111–3119. https://proceedings.neurips.cc/paper/2013/hash/
9aa42b31882ec039965f3c4923ce901b-Abstract.html

[31] Amir M. Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. 2022.
Type4Py: Practical Deep Similarity Learning-Based Type Inference for Python.
In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2241–2252. https://doi.org/10.
1145/3510003.3510124

[32] Todd K. Moon. 1996. The expectation-maximization algorithm. IEEE Signal
Process. Mag. 13, 6 (1996), 47–60. https://doi.org/10.1109/79.543975

[33] Giang Nguyen, Md Johirul Islam, Rangeet Pan, and Hridesh Rajan. 2022. Manas:
Mining Software Repositories to Assist AutoML. In 44th IEEE/ACM 44th Interna-
tional Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022. ACM, 1368–1380. https://doi.org/10.1145/3510003.3510052

[34] Hemant Palivela, C R Nirmala, and Divesh Ramesh Kubal. 2017. Application of
various graph kernels for finding molecular similarity in ligand based drug
discovery. In 2017 4th International Conference on Advanced Computing and
Communication Systems (ICACCS). 1–8. https://doi.org/10.1109/ICACCS.2017.
8014688

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo

https://doi.org/10.1145/3385412.3385997
http://proceedings.mlr.press/v48/bielik16.html
http://proceedings.mlr.press/v48/bielik16.html
https://arxiv.org/abs/1912.00680
http://arxiv.org/abs/1912.00680
http://arxiv.org/abs/1912.00680
https://doi.org/10.1109/TPAMI.1982.4767310
https://doi.org/10.1016/S0167-8655(97)00179-7
https://doi.org/10.1016/S0167-8655(97)00179-7
https://doi.org/10.1145/3510003.3510125
https://doi.org/10.1145/3133872
https://doi.org/10.1016/S0019-9958(59)90362-6
http://dl.acm.org/citation.cfm?id=3009882
https://doi.org/10.1145/3510003.3510061
https://doi.org/10.1145/3510003.3510061
https://doi.org/10.1109/RE.2016.15
https://doi.org/10.1016/j.jss.2017.06.021
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1109/PERCOM.2004.1276847
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3551349.3556912
https://doi.org/10.1145/3551349.3556912
https://www.aclweb.org/anthology/P16-1195/
https://www.aclweb.org/anthology/P16-1195/
https://doi.org/10.1145/3510003.3510172
https://doi.org/10.1145/3510003.3510172
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3519939.3523449
https://proceedings.neurips.cc/paper/2019/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d0921d442ee91b896ad95059d13df618-Abstract.html
https://arxiv.org/abs/2102.00546
https://arxiv.org/abs/2102.00546
http://proceedings.mlr.press/v139/luo21a.html
https://doi.org/10.1109/ICSE.2019.00045
https://doi.org/10.1186/s12859-020-3518-6
https://doi.org/10.1109/TSE.2017.2688333
https://doi.org/10.1145/3158117
https://doi.org/10.1145/3158117
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1109/79.543975
https://doi.org/10.1145/3510003.3510052
https://doi.org/10.1109/ICACCS.2017.8014688
https://doi.org/10.1109/ICACCS.2017.8014688

Statistical Type Inference for Incomplete Programs ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[36] Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and
Michael R. Lyu. 2022. Static Inference Meets Deep learning: A Hybrid Type
Inference Approach for Python. In 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM,
2019–2030. https://doi.org/10.1145/3510003.3510038

[37] Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Trans.
Program. Lang. Syst. 22, 1 (2000), 1–44. https://doi.org/10.1145/345099.345100

[38] Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. 2020. Type-
Writer: neural type prediction with search-based validation. In ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 209–220.
https://doi.org/10.1145/3368089.3409715

[39] Veselin Raychev, Pavol Bielik, and Martin T. Vechev. 2016. Probabilistic model for
code with decision trees. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 -
November 4, 2016. 731–747. https://doi.org/10.1145/2983990.2984041

[40] Veselin Raychev, Martin T. Vechev, and Andreas Krause. 2019. Predicting program
properties from ’big code’. Commun. ACM 62, 3 (2019), 99–107. https://doi.org/
10.1145/3306204

[41] Mike Schuster and Kuldip K. Paliwal. 1997. Bidirectional recurrent neural
networks. IEEE Trans. Signal Processing 45, 11 (1997), 2673–2681. https:
//doi.org/10.1109/78.650093

[42] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit
Jhala. 2017. Learning to blame: localizing novice type errors with data-driven
diagnosis. Proc. ACM Program. Lang. 1, OOPSLA (2017), 60:1–60:27. https:
//doi.org/10.1145/3138818

[43] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M. Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. J. Mach.
Learn. Res. 12 (2011), 2539–2561. http://dl.acm.org/citation.cfm?id=2078187

[44] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian
Tang. 2020. GraphAF: a Flow-based Autoregressive Model for Molecular Graph
Generation. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.
net/forum?id=S1esMkHYPr

[45] Weisong Sun, Chunrong Fang, Yuchen Chen, Guanhong Tao, Tingxu Han, and
Quanjun Zhang. 2022. Code Search based on Context-aware Code Translation.

In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE
2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 388–400. https://doi.org/10.
1145/3510003.3510140

[46] Zhensu Sun, Li Li, Yan Liu, Xiaoning Du, and Li Li. 2022. On the Importance
of Building High-quality Training Datasets for Neural Code Search. In 44th
IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pitts-
burgh, PA, USA, May 25-27, 2022. ACM, 1609–1620. https://doi.org/10.1145/
3510003.3510160

[47] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using Pre-Trained Models to Boost Code
Review Automation. In 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2291–2302.
https://doi.org/10.1145/3510003.3510621

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[49] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Proba-
bilistic Type Inference using Graph Neural Networks. In 8th International Con-
ference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net. https://openreview.net/forum?id=Hkx6hANtwH

[50] Ling Xu, Huanhuan Yang, Chao Liu, Jianhang Shuai, Meng Yan, Yan Lei, and Zhou
Xu. 2021. Two-Stage Attention-Based Model for Code Search with Textual and
Structural Features. In 28th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2021, Honolulu, HI, USA, March 9-12, 2021.
IEEE, 342–353. https://doi.org/10.1109/SANER50967.2021.00039

[51] Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. 2016.
Python probabilistic type inference with natural language support. In Proceed-
ings of the 24th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, Thomas
Zimmermann, Jane Cleland-Huang, and Zhendong Su (Eds.). ACM, 607–618.
https://doi.org/10.1145/2950290.2950343

[52] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng, and Lizhu
Zhou. 2009. Comparing Stars: On Approximating Graph Edit Distance. Proc.
VLDB Endow. 2, 1 (2009), 25–36. https://doi.org/10.14778/1687627.1687631

Received 2023-02-02; accepted 2023-07-27

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1145/3510003.3510038
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/2983990.2984041
https://doi.org/10.1145/3306204
https://doi.org/10.1145/3306204
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/10.1145/3138818
https://doi.org/10.1145/3138818
http://dl.acm.org/citation.cfm?id=2078187
https://openreview.net/forum?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr
https://doi.org/10.1145/3510003.3510140
https://doi.org/10.1145/3510003.3510140
https://doi.org/10.1145/3510003.3510160
https://doi.org/10.1145/3510003.3510160
https://doi.org/10.1145/3510003.3510621
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=Hkx6hANtwH
https://doi.org/10.1109/SANER50967.2021.00039
https://doi.org/10.1145/2950290.2950343
https://doi.org/10.14778/1687627.1687631

	Abstract
	1 Introduction
	2 A Motivating Example
	3 Stir: Statistical Type Inference
	3.1 Overview
	3.2 Predicting Simple Types
	3.3 Refining Complex Types

	4 Evaluation
	4.1 RQ1: Predicting Type Tags
	4.2 RQ2: Inferring Complex Types
	4.3 RQ3: Inferring Zero-Shot Types
	4.4 Discussions

	5 Related work
	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

