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Abstract—Spin-transfer torque RAM (STT-RAM) has been proposed to build on-chip caches because of its attractive features such

as high storage density and ultra low leakage power. However, long write latency and high write energy are the two challenges for

STT-RAM. Recently, researchers propose to improve the write performance of STT-RAM by relaxing its non-volatility property.

To avoid data losses resulting from volatility, refresh schemes have been proposed. However, refresh operations consume additional

overhead. In this paper, we propose to significantly reduce the number of refresh operations through re-arranging program data layout

at compilation time. An N-refresh scheme is also proposed to further reduce the number of refreshes. Experimental results show that,

on average, the proposed methods can reduce the number of refresh operations by 84.2 percent, and reduce the dynamic energy

consumption by 38.0 percent for volatile STT-RAM caches while incurring only 4.1 percent performance degradation.

Index Terms—Compilation, volatile STT-RAM, refresh

Ç

1 INTRODUCTION

AS technology scales down, traditional SRAM-based
caches face challenges such as leakage energy and

scalability. Recent advancements in memory technology
present spin-transfer torque RAM (STT-RAM) as a new can-
didate for building caches [1]. Compared to SRAM, STT-
RAM has higher storage density and negligible leakage
power. However, compared to SRAM, write operations in
STT-RAM have longer latency and higher energy consump-
tion. A lot of work has been done to mitigate costly write
operations on STT-RAM [2], [3], [4]. Recently, researchers
propose to improve write speed and write energy of STT-
RAM by relaxing the non-volatility property [5]. Table 1
shows an example of different designs of STT-RAM cells
[6]. As the retention time decreases, the write latency and
write energy consumption are reduced. However, the
reduced retention time may not be sufficient to retain long
living data in cache blocks. Refresh schemes are proposed
to avoid data losses [6], [7]. Refresh operations consume
additional energy and overhead. This paper proposes a
compilation based approach to significantly reduce the
number of refresh operations in volatile STT-RAM caches.

There are two kinds of operations that can refresh the
lifespan of cache blocks. On a write access to a cache block,
or when data is loaded from the main memory to a cache
block, the block’s lifespan is reset to the new-born state, and
the data in this block can be stored for another retention
period. These kind of operations, triggered by the program
behaviour, are called passive refresh in this paper. A passive
refresh cannot guarantee the validity of a data block for the
next usage, so a refresh scheme is indispensable. Refresh
schemes usually employ counters to track the lifespan of
data blocks and provide refresh operations on demand.
These kind of operations are called active refresh in this
paper. An active refresh operation involves two operations:
loading data from a cache block into a buffer, and storing
data back into the same cache block. These operations con-
sume additional energy. Both a passive refresh operation and
an active refresh operation can refresh the whole cache block.
Therefore, if there is a refresh operation (either active or
passive) within a retention period, no data losses will occur.
In this paper, we propose to re-arrange the data layout with
the purpose of changing the memory access sequence. As a
result, the behaviour of passive refresh will be changed such
that the total number of required active refresh operations is
minimized. To deal with data blocks in which the interval
between two consecutive accesses are very long, we also
propose a refresh scheme which refreshes a data block no
more than a predetermined number of times. Reducing the
number of refresh operations leads to a reduction of energy
consumption. Experimental results show that the proposed
methods can reduce the number of refresh operations by
84.2 percent, and reduce the dynamic energy consumption
by 38.0 percent on average for volatile STT-RAM caches.
This paper makes the following contributions:

� Proposes the problem of active refresh minimization
in volatile STT-RAM cache by re-arranging the data
layout at compilation time;

� Proposes an integer linear programming (ILP) solu-
tion for the active refreshminimization problem;

� Q. Li is with the State Key Laboratory of Software Engineering and the
School of Computer, Wuhan University, Wuhan, China.
E-mail: qali@whu.edu.cn.

� Y. He is with the School of Computer, Wuhan University, Wuhan, China.
E-mail: yxhe@whu.edu.cn.

� J. Li is with the School of Computer and Information, Hefei University of
Technology, Hefei, China. E-mail: jianhual@mail.ustc.edu.cn.

� L. Shi is with the School of Computer Science, Chongqing University,
Chongqing, China. E-mail: shiliang@cqu.edu.cn.

� Y. Chen is with the Department of Electrical and Computer Engineering,
University of Pittsburgh, Pittsburg, PA 15260. E-mail: yic52@pitt.edu.

� C.J. Xue is with the Department of Computer Science, City University of
Hong Kong, Hong Kong. E-mail: jasonxue@cityu.edu.hk.

Manuscript received 4 July 2013; revised 26 Nov. 2013; accepted 11 Dec.
2013. Date of publication 25 Sept. 2014; date of current version 10 July 2015.
Recommended for acceptance by J. Xue.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2014.2360527

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 8, AUGUST 2015 2169

0018-9340� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



� Proposes a heuristic algorithm to solve the active
refreshminimization problem;

� Proposes an N-refresh scheme to handle data blocks
in which the interval between two consecutive
accesses are very long;

� Conducts a large set of experiments to evaluate the
proposed data layout methods with different refresh
schemes.

The rest of this paper is organized as follows. Section 2
discusses several refresh schemes and the motivation.
Section 3 describes the problem of data layout for active
refresh minimization. Section 4 proposes an integer linear
programming solution to the active refresh minimization
problem. Section 5 proposes a heuristic algorithm for active
refresh minimization. Section 6 presents the experimental
setup and the experimental results. Section 7 presents the
sensitivity analysis of the proposed methods. The related
work and conclusion are presented in Sections 8 and 9
respectively.

2 REFRESH SCHEMES AND MOTIVATION

In this section, we first present several refresh schemes,
and then present a motivation example to illustrate the
potential of active refresh reduction through re-arranging
the data layout.

2.1 Refresh Schemes

Several refresh schemes have been proposed for volatile
STT-RAM designs. Three schemes will be evaluated in the
experiments: full-refresh, [6], dirty-refresh, [7], and N-refresh
schemes. The N-refresh scheme is proposed in this paper.

Full-refresh. Sun et al. in [6] present a refresh scheme to
refresh cache blocks asynchronously by tracking the life-
span of each cache block. In this scheme, a counter is
attached to each data block, and three types of actions are
needed. First, the STT-RAM cells retention time is divided
into multiple checking periods, and a global clock is used to
maintain the count-down to a checking period. Second,
each counter is incremented by one when a checking period
elapses. When a counter reaches a predetermined value, the
corresponding data block is refreshed. Third, on a write
access to a data block or when a data is loaded into a cache
block, its corresponding counter is reset to zero. This
scheme refreshes all valid data blocks. It is called full-refresh
scheme in this paper. Table 2 shows that this scheme incurs
frequent active refresh operations. The architecture parame-
ters that we used for evaluation in this paper are shown
in Table 6. On average, there are about 25 active refresh
operations per hundred memory accesses. These refresh
operations lead to significant overload.

Dirty-refresh. Jog et al. in [7] present a scheme similar to
the full-refresh scheme. This scheme only refreshes dirty
blocks, and discards clean blocks when they are untouched
for a retention period. It is called dirty-refresh scheme in this
paper. Compared to the full-refresh scheme, this scheme
reduces the number of active refresh operations, but also
decreases the cache hit ratio.

N-refresh. There are some data blocks in which the inter-
vals between two consecutive writes are very long. An
extreme case is the so-called dead blocks which will never
be used after a write. Fig. 1 shows that there are about 5.9
percent intervals longer than 13,250 cycles (a retention
period). These intervals require active refresh to ensure data
correctness, and they are called long intervals here. Among
these long intervals, 25.8 percent are longer than 106,000
cycles (eight retention periods). For these intervals, full-
refresh and dirty-refresh schemes need to refresh many times
to sustain their lifespan with little benefit. Furthermore, 34.3
percent of these long intervals are dead intervals. A dead inter-
val is an interval starting with a data write but is never read
before the next write. For these dead intervals, the refresh
operations produce only overhead with no benefit.

Based on this observation, we propose an N-refresh
scheme under which each data block will be refreshed at
most 2N � 1 times. Therefore, a block untouched for 2N

retention periods will be automatically invalidated and its
content will be written back to lower level memory hierar-
chy. To implement the N-refresh scheme, we only need to
add N bits to the counter attached to each data block.

TABLE 2
Frequent Refresh under the Full-Refresh Scheme

Instruction Count Load Store Refresh

adpcm 33,508 11,762 7,051 2,453
bcnt 8,543 2,325 1,324 1,058
blit 30,513 4,314 3,328 4,050
crc 16,636 3,705 1,785 2,170
engine 293,053 55,697 49,324 11,131
fir 16,649 3,110 1,766 1,417
g3fax 637,203 81,579 84,278 32,296
pocsag 31,735 5,562 4,856 2,116
qurt 9,202 2,356 1,372 1,083
ucbqsort 310,653 113,781 36,625 14,409

TABLE 1
Parameters in Different STT-RAM Cell Designs [6]

Design 1 Design 2 Design 3

Cell size (F 2) 23 22 27.3
MTJ sw time (ns) 10 5 1.5
Retention Time 4.27 yr 3.24 s 26.5 ms
Write Latency (ns) 10.378 5.370 1.500
Write Dyn. Eng(nJ) 0.958 0.466 0.187

Fig. 1. Distribution of intervals between adjacent memory stores onto the
same cache block in clock cycles. The evaluation results are based on a
cache with 32-byte block size and 32-bit memory width. More parame-
ters are shown in Table 6.
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Compared to the full-refresh scheme, this scheme reduces
the number of active refresh operations with a small
decrease in the cache hit ratio.

2.2 Motivation Example

An example is presented in this section to illustrate the
potential of reducing the number of active refresh operations
through re-arranging the data layout. Assume that there are
four data objects (a, b, c, and d) and two memory blocks.
Each memory block can hold two data objects. The retention
time of volatile STT-RAM cache is 5 ms. Given a data access
trace, a data write trace can be extracted by recording only
write accesses, as shown in Fig. 2a. The subscripts indicate
the timestamps for the corresponding writes. Two alloca-
tions are considered. With the first allocation as illustrated
in Fig. 2b, nine active refresh operations are needed. How-
ever, with the second allocation as illustrated in Fig. 2c,
more blocks are passively refreshed within each 5 ms period
due to write accesses. As a result, only six active refresh oper-
ations are needed. Based on this observation, this paper pro-
poses to minimize the number of active refresh operations for
volatile STT-RAM caches by re-arranging the data layout at
compilation time.

3 PROBLEM DESCRIPTION

Given a data write trace, either through profiling or
static analysis, the goal of this paper is to find an alloca-
tion function to allocate data object into memory blocks
such that the number of required active refresh operations
is minimized. Note that as a common practice, data
objects are allocated into three disjoint areas, the stack,
global, and heap areas. Therefore, data layout should be
conducted separately for each area. The notations used
in this paper are listed in Table 3. Given a data write
trace DTrace ¼ <dw1; dw2; ::: > , the target problem can
be stated as follows:

1) The data write trace DTrace is transformed into a
memory block write trace BTrace ¼< bw1; bw2; . . . >,
where bwi and dwi satisfy: bwi ¼ allocðdwiÞ. If a data
object d is allocated to memory block b, then each
write to d inDTracewill result in awrite to b in BTrace.

2) The BTrace is split into a set of sub-traces. Each sub-
trace consists of writes to the same memory block.

For the example in Fig. 2a, two sub-traces
a6b12a18b24a30 and c9d15c21d27 can be obtained for
block1 and block2, respectively.

Fig. 2. A motivation example with 5ms retention period. A solid vertical line indicates an active refresh operation, and a dotted vertical line indicates a
passive refresh operation. (a) The data write trace. The subscripts indicate the timestamps for the corresponding writes. (b) The first allocation, fa; bg
in block1 and fc; dg in block2, needs nine active refresh operations. (c) The second allocation, fa; cg in block1 and fb; dg in block2, needs six active
refresh operations.

TABLE 3
Notations for the Target Problem

Notation Detail

D ¼ fd1; . . . ; dng The set of data objects.
SizeDi The size of di in bytes.
B ¼ fb1; . . . ; bmg The set of memory blocks. A memory block is the basic unit for cache

loading and storing operations.
SizeB The size of a memory block in bytes.
DTrace ¼ <dw1; dw2; . . . ; dwi; . . .> The data write trace, a sub-trace of the data trace with only writes recorded.
DOi The target data object of data write dwi.
TSi The time stamp for data write dwi.
TSstart The time stamp when the program starts.
TSend The time stamp when the program ends.
SizeWi The size of dwi. By preprocessing, if dwi is the first occurrence

ofDOi, SizeWi is SizeDDOi
; otherwise, it is zero.

BTrace ¼ <bw1; bw2; . . . ; bwi; . . .> The memory block write trace.
T The retention time of STT-RAM cells.
alloc : D ! B The allocation function to allocate data objects into memory blocks.
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3) For each sub-trace tracebj ¼ <bwj
1; bw

j
2; . . .> for block

bj, the number of required active refresh operations
can be computed using Equation (1). This is because
that, assuming the retention time is T , the number of
required active refresh operations within each time
interval inv is binv=Tc.

nARbj ¼
Xjtracebj j�1

i¼1

��
TS

bw
j
iþ1

� TS
bw

j
i

��
T
�

þ ��
TS

bw
j
1
� TSstart

��
T
�

þ ��
TSend � TS

bw
j
jtracebj j

��
T
�
:

(1)

For simplicity, in this paper, we do not model the
cache behaviour, such as cache hits/misses and thus
the passive refresh resulting from cache block loading
is ignored. As a result, Equation (1) is employed for
problems under both full-refresh and dirty-refresh
schemes. For problems under N-refresh scheme, this
equation is not accurate. This is because that, assum-
ing the retention time is T , the number of required
active refresh operations within each time interval inv

should not be greater than 2N � 1. Therefore, the
number of required active refresh operations is

minfbinv=Tc; 2N � 1g, and Equation (1) should be
changed accordingly.

4) The goal is to find an allocation function alloc to
minimize:

XjNj

j

nARbj : (2)

Note that any re-arrangement of data layout will affect
the program locality. The impact of program locality is
not integrated directly into this formulation. This limita-
tion will be discussed in Section 6. In addition, we do not
re-arrange data layout of the heap area, since the heap
area is rarely used in embedded applications and it is
difficult to manage heap area at compilation time. Data
objects with size greater than the cache block size will be
allocated using the default method.

4 ILP FORMULATION

In this section, an integer linear programming ormulation is
presented for the target problem. ILP is a mathematical
method to achieve the best outcome (such as maximum
profit or lowest cost) in a given model, under a list of con-
straints represented as linear relationships and a specific
constraint that the solution should be modelled within the
integer domain. Once a problem is formulated as ILP,
advanced and sophisticated mathematical techniques can
be employed to search the optimal results by simply apply-
ing commercial ILP solvers. ILP is NP-hard in general, and
ILP solvers commonly employ implicit enumeration techni-
ques to obtain the optimal results. Although ILP solvers
often consume lots of computation resources, they can
obtain the optimal results for relatively small problems
within an acceptable time frame. Furthermore, ILP solutions
can also help to evaluate the effectiveness of other efficient
but suboptimal algorithms.

In this section, we first present the ILP formulation for
the allocation problem under full-refresh and dirty-refresh
schemes. Then, an example is shown to explain this formu-
lation. Finally, we discuss the formulation for the problem
under N-refresh scheme.

We use xj
i to indicate whether the target data object

of dwi is allocated into memory block bj, as defined in
Equation (3).

xj
i ¼

1; if dwi isallocatedintomemoryblock bj;
0; otherwise:

�
(3)

If the target data object of a data write dwi is allocated into
memory block bj, and dwi occurs at time stamp TSi, then a
memory write occurs in bj at TSi; otherwise, dwi occurs in
other memory blocks, and at TSi no memory write occurs in

bj. We use ptsji to denote the pseudo time stamp when
data write dwi occurs in bj, as defined in Equation (4). This
set of pseudo time stamps are used to simplify the ILP for-
mulation.

ptsji ¼
TSstart; if i ¼ 0;
TSend; if i ¼ jDTracej þ 1;
TSi; if 1 � i � jDTracej and dwi is in bj;

ptsji�1; otherwise:

8
>><

>>:
(4)

To comply with the definition in Equation (4), we use
Equation (5) to constrain the value of ptsji . The first line
states that the first pseudo time stamp for each block is
TSstart. The second line states that the last pseudo time
stamp for each block is TSend. The following three lines con-
strain the other pseudo time stamps. If dwi actually occurs

in bj, x
j
i ¼ 1. Then, the fifth line leads to ptsji � TSi. Together

with the third line, it constrains that the value of ptsji can

only be TSi. If dwi doesn’t occur in bj, x
j
i ¼ 0. Then, the

fourth line leads to ptsji � ptsji�1. Together with the third

line, it constrains that the value of ptsji can only be ptsji�1.

8j 2 f1; 2; . . . ; jBjg; ptsj0 ¼ TSstart

8j 2 f1; 2; . . . ; jBjg; ptsjjDTracejþ1 ¼ TSend

8i 2 f1; 2; . . . ; jDTracejg; ptsji�1 � ptsji � TSi

8i 2 f1; 2; . . . ; jDTracejg; ptsji � ptsji�1 þ xj
i � TSi

8i 2 f1; 2; . . . ; jDTracejg; ptsji � TSi þ ðxj
i � 1Þ � TSi:

(5)

For each memory block, there must be an active refresh or a
passive refresh (a memory write) within the retention time T ,
to avoid data losses. If the interval between two consecutive
writes in the block is equal to or longer than T , extra active
refresh is needed. The number of required active refresh in
memory block bj, between consecutive data writes dwi and
dwiþ1 from the whole trace, can be computed using Equa-
tion (6). As indicated in this Equation, if dwiþ1 does not

occur in bj, pts
j
iþ1 equals pts

j
i , and no active refresh is needed.

nARj
i ¼ bðptsjiþ1 � ptsjiÞ=Tc: (6)

However, Equation (6) is not linear. Instead, we use the fol-
lowing linear Equation (7).
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8j 2 f1; 2; . . . ;jBjg; nARj
0 ¼ 0:

8i 2 f1; 2; . . . ;jDTracej þ 1g; �ptsji � ptsji�1

�� T þ 1

� nARj
i � T � ptsji � ptsji�1:

(7)

Then, the cost (the number of required active refresh)
resulting from memory block bj can be described using
Equation (8).

costj ¼
XjDTracejþ1

i¼1

nARj
i : (8)

The objective is to minimize the total cost depicted in
Equation (9).

XjBj

j¼1

costj: (9)

There are further constraints to ensure that the allocation
is valid. First, each data write (from the original trace) can be
allocated into only one memory block. This is depicted
using Equation (10). Here we assume that the program start
point and end point are allocated into every memory block.
An example at the end of this section will show that this
assumption helps to compute the required active refresh
before the first touch of each block and after the last touch
of each block.

8i 2 f1; 2; . . . ;jDTracejg;
XjBj

j¼1

xji ¼ 1

8j 2 f1; 2; . . . ;jBjg; xj
0 ¼ 1

8j 2 f1; 2; . . . ;jBjg; xj
jDTracejþ1 ¼ 1:

(10)

Second, each data object can only be allocated into one mem-
ory block, as described in Equation (11). Therefore, all
data writes that target at the same data object must be
allocated into the same memory block, as depicted using
Equation (11).

8i1; i2 2 f1; 2; . . . ; jDTracejg; DOi1 ¼ DOi2 ;

8j 2 f1; 2; . . . ; jBjg;
xj
i1
¼ xj

i2
:

(11)

Furthermore, the total size of data objects allocated into
the same memory block should not be greater than the
size of one memory block, as described in Equation (12).
Note that if a data write dwi is not the first occurrence of

a data object dj in the trace, the size of dwi is set to zero
during preprocessing.

8j 2 f1; 2; . . . ; jBjg;
XjDTracej

i¼1

xj
i � SizeW i � SizeB: (12)

In total, there are three sets of important variables, xj
i ,

ptsji , and nARj
i . Among these variables, xj

i should be binary

values, ptsji and nARj
i should be integer values.

Here we use the previous example in Fig. 2c to illustrate
the intrinsic meanings of the above ILP notations. As shown
in Table 4, the DTrace is <a; c; b; d; a; c; b; d; a;>. With fa; cg
allocated in block1, the sub-trace1 is <a; c; a; c; a>. Assume

that TSstart is 0, and TSend is 31. The value of pts
j
i can be com-

puted using Equation (5), as shown in the fifth and eighth

rows of Table 4. Similarly, the value of costj can be com-
puted using Equation (8), as shown in the last column of
Table 4.

To adapt this ILP formulation for the problem under N-
refresh scheme, we only need to change Equation (7) into
Equation (13), since under N-refresh scheme, each memory
block can be consecutively refreshed at most 2N � 1 times.

8j 2 f1; 2; . . . ;jBjg; nARj
0 ¼ 0

8i 2 f1; 2; . . . ;jDTracej þ 1g; nARj
i � T � ptsji � ptsji�1

8i 2 f1; 2; . . . ;jDTracej þ 1g; nARj
i � 2N � 1:

(13)

5 A HEURISTIC ALGORITHM

As ILP is not scalable for large problem sets, we propose
an efficient and effective heuristic algorithm in this paper.
We consider only pairwise information between data
objects during the data layout process to simplify the
target problem. For each pair of data objects, di and dj,
we extract a sub-trace by removing all other data objects
from the data write trace. We denote this sub-trace as
tracei;j ¼ <dw1; dw2; . . .>. Then, the cost of assigning di
and dj into the same block is approximated as:

costi;j ¼
Xjtracei;jj�1

k¼1

bðTSdwkþ1
� TSdwk

Þ=Tc: (14)

If di and dj are assigned into different blocks, this cost is
zero. This simplified problem can bemodelled as a quadratic

TABLE 4
An Example for ILP Illustration

i 0 1 2 3 4 5 6 7 8 9 10 costj

DTrace start a c b d a c b d a end
TSi 0 6 9 12 15 18 21 24 27 30 31

block1 sub-trace1 start a c — — a c — — a end 3
pts1i 0 6 9 9 9 18 21 21 21 30 31

{a,c} nAR1
i

0 b65c ¼ 1 0 0 0 b95c ¼ 1 0 0 0 b95c ¼ 1 0

block2 sub-trace2 start — — b d — — b d — end 3
pts2i 0 0 0 12 15 15 15 24 27 27 31

{b,d} nAR2
i

0 0 0 b125 c ¼ 2 0 1 0 b95c ¼ 1 0 1 0

LI ET AL.: COMPILER-ASSISTED REFRESH MINIMIZATION FOR VOLATILE STT-RAM CACHE 2173



assignment problem (QAP) for which a graph representation
can be employed. In this graph, a vertex represents a data
object, the weight of an edge connecting two vertices repre-
sents the cost of assigning the two related data objects into
the same block. Now the target problem is transformed to
partitioning the graph into its vertex-induced sub-graphs,
where each sub-graph corresponds to a block, such that the
total cost of all sub-graphs is minimized.

Since QAP is NP-hard in general [8], a heuristic algo-
rithm is proposed in this paper. This algorithm consists of
two steps: graph partitioning and data layout finalization.
The proposed algorithm re-arranges data layout for global
area and stack area separately and in the similar fashion.
Therefore, only data layout for stack area is discussed in
detail in the rest of this paper.

5.1 Graph Partitioning

The graph partitioning for stack data layout is conducted
separately for each function, and is illustrated in Algorithm
5.1. First, it builds a list of empty memory blocks to be
allocated. Then, it allocates data objects into blocks, by itera-
tively retrieving the edge with the smallest weight and allo-
cating the related two data objects into the same block.
After each allocation, the graph is updated accordingly.

Algorithm 5.1. Graph Partitioning.

Input:
graph: the graph representation;
blocks: an empty list of memory blocks;
nStackSize: the stack size for a function;

Output:
blocks: a list of assigned memory blocks;

1: // Step 1: initialize the list of memory blocks;
2: int nThreshold = nStackSize/CACHE_LINE_SIZE;
3: for i ¼ 1 to nThreshold do
4: build a new memory block b and add it into blocks;
5: end for
6: // Step 2: allocate data into the list of memory blocks
7: while graph is not empty do
8: retrieve an edge eðv1; v2Þ from graph with the smallest

weight;
9: // try to allocate v1; v2 into the same block
10: if both v1 and v2 are unallocated then
11: allocate v1 and v2 into the same block;
12: merge vertex v1 and v2;
13: else if only one object is unallocated then
14: allocate it into the block holding the other object;
15: merge vertex v1 and v2;
16: else
17: delete edge eðv1; v2Þ from the graph;
18: end if
19: end while
20: // Step 3: allocate the other data using the default method
21: allocate the unallocated data using the default method;
22: return blocks;

An example is illustrated in Fig. 3 to show the graph
partitioning process. In the proposed algorithm, the
weighted graph is a complete graph. It is assumed that all
data objects are of the same size, and that each cache block
(or memory block) can hold three objects. Since there are

five objects, the memory blocks list is initialized with two
(5/3) empty blocks. In the first step, the edge connected by
node a and node d has the smallest weight, 2. So node a
and node d are allocated into the first memory block
and they are merged into one node ða; dÞ. During this pro-
cess, the edges connected by a and d are merged. For
example, the edges ða; eÞ and ðd; eÞ are merged into ða; eÞ,
and the weight is updated (5=minf5; 6g). The final alloca-
tion is shown in the fourth step.

Let’s discuss the complexity of the graph partitioning
process. Assume that the number of global objects is Ng and
the number of stack objects in function fi is Nfi . We denote

maxfNg;Nf1 ; Nf2 ; . . .g as M. Then the number of nodes and

edges in a graph is no more than M and M2 respectively.
The kernel code is the loop starting at line 7. In this loop,
since each iteration can erase an edge from the graph, the

total number of iterations is bounded by M2. The time cost
of each iteration is limited by OðMÞ. Therefore, the timing

complexity for Algorithm 5.1 is OðM3Þ. For a compilation
optimization pass, this time cost is acceptable.

5.2 Data Layout Finalization

After the graph partition process, a list of memory blocks
containing data objects are obtained. The offset of each data
object internal to its memory block is also obtained. Now,
we will conduct the layout finalization work for the stack.
This work assigns each data object into the stack address
space according to its memory block and offset. The finali-
zation work involves two processes, the alignment process
and the mapping process.

The alignment process aims to align the stack base
pointer of each function with the cache block size. Two tasks
are carried out for this process. First, extra instructions are
inserted at the entry of the main function to align the stack
base pointer of the main function with the cache block size.
Second, the stack size of each function is expanded to be a
multiple of the cache block size.

The mapping process aims to assign data objects to
addresses. After the alignment work, we can finalize the
stack layout by mapping the memory blocks into the stack
directly. Assume that the cache block size is C, a data object
d belongs to the nth memory block, and the offset is off.

Fig. 3. Graph partitioning.
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During the mapping process, we simply allocate d to ESP
+n*C+off. With this mapping process, the objects previously
allocated into the same memory block using Algorithm 5.1
will also be loaded into the same cache block. Note that
some special contents belonging to the stack could not be
re-arranged freely. Therefore, the mapping of memory
blocks should be conducted after the space for all special
contents have already been reserved.

6 EXPERIMENTS

In this section, we first introduce the experimental method-
ology, and then present the experimental results of the pro-
posed methods.

6.1 Experimental Methodology

As stated in Section 2.1, there are three kinds of STT-RAM
refresh schemes: full-refresh, dirty-refresh, and N-refresh
schemes. There are also three data layout methods dis-
cussed in this paper, default data layout, heuristics based
data layout (Section 5), and ILP based data layout (Section
4). The refresh schemes and the data layout methods are
orthogonal. The combination of refresh schemes and data
layout methods constitutes nine methods as shown in
Table 5. All these nine methods are evaluated in this paper.
Here we choose N as 1 for the N-refresh scheme.

To evaluate these methods, we implement a PIN-based
[9] cache simulator. This simulator implements all three
refresh schemes in Table 5 and targets at embedded systems
where single core with one-level cache is widely used. The
architecture parameters shown in Table 6 are based on TI
DM3x Video SOC [10]. The Powerstone benchmark suite
[11] is evaluated in the experiments which contains typical
benchmarks for embedded systems.

The experimental setup is shown in Fig. 4, consisting of
four steps. First, a benchmark is compiled using the original
LLVM [12]. The output includes the binary and the symbol
table information for this benchmark. Second, by running
the binary in the PIN-based cache simulator, the memory
trace with timestamps is obtained. With the symbol table
information, a memory trace is transformed into a data
write trace. Third, with this data write trace, the benchmark
is re-compiled by LLVM. This time, the data layout of stack
and global objects is re-arranged using one of the data lay-
out methods shown in Table 5. The ILP based methods are

implemented using a commercial ILP solver, LINGO [13].
Fourth, by running the binaries with the re-arranged data
layout in the same cache simulator, the statistics are col-
lected. For all methods, we evaluate the impact on both
dynamic energy consumption and performance.

6.2 Experimental Results

In this section, we first evaluate the proposed methods and
present the results of dynamic energy and performance
respectively. The reduction of dynamic energy is mainly
due to the reduction of active refresh. The improvement of
performance is mainly due to the increase of cache hit ratio.
Note that the ILP solver can obtain the optimal results for
only four out of ten benchmarks. We then evaluate partial
traces for the other six benchmarks.

6.2.1 Impact on Active Refresh and Dynamic Energy

We first discuss the impact on active refresh. Fig. 5a shows
the number of active refresh operations of the nine methods
for different benchmarks. All results are normalized to the
FR method. It is found that, compared to the default data
layout, the proposed heuristic method can further reduce
the number of active refresh by 12.4, 15.7, and 2.0 percent
under the full-refresh, dirty-refresh, and N-refresh schemes,
respectively. It also shows that, for the four benchmarks of
which the ILP method can obtain the results, the ILP
method can reduce more active refresh than the heuristic
method under all refresh schemes. This is because the ILP
method pursues the optimal results.

In addition, compared to the full-refresh scheme, with the
default data layout, the dirty-refresh and N-refresh schemes
can reduce the number of active refresh by 42.7 and 82.4 per-
cent respectively, on average. Combining the effects of both
refresh schemes and data layout methods, compared to the

Fig. 4. The experimental setup.

TABLE 5
Evaluated Methods

full-refresh dirty-refresh N-refresh

Default data layout FR DR NR
Heuristics data layout FR-DL DR-DL NR-DL
ILP based layout FR-ILP DR-ILP NR-ILP

TABLE 6
Architecture Parameters

Parameter Value

processor single core, in order execution, 500 MHz
16 KB, 32 B cache block size, LRU, 4-way
write allocation, write back
a small SRAM buffer used for refresh

data cache
read/write latency: 1/1 cycles
retention time: 13250 cycles (26.5ms)
read/write dynamic energy: 0.035/0.187 nJ
buffer read/write dynamic energy:
0.075/0.059 nJ
dynamic energy of active refresh: 0.356 nJ

main memory 300 cycles latency
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FR method, the DR-DL, and NR-DL methods can reduce the
number of active refresh by 58.4 and 84.2 percent respec-
tively. It also shows that, on average, N-refresh scheme
reduces more active refresh than dirty-refresh scheme. How-
ever, as the following results shows, dirty-refresh has better
performance compared with N-refresh.

Next we present the impact on dynamic energy con-
sumption. Fig. 5b shows the dynamic energy consumption
of the nine methods. It is found that, compared to the
default data layout, the proposed data layout methods can
consistently reduce the dynamic energy consumption for all
refresh schemes. This is consistent to the impact on refresh
operations. Compared to the FR method, on average, the
DR-DL and NR-DL methods can reduce the dynamic
energy consumption in data cache by 26.4 and 38.0 percent,
respectively. It also shows that, for the four benchmarks of
which the ILP method can obtain results, compared to the
default data layout, the heuristic (ILP) data layout can
improve energy efficiency by 6.1 percent (11.2 percent), 8.2
percent (12.9 percent), and 1.2 percent (1.6 percent), in full-
refresh, dirty-refresh, and N-refresh schemes respectively.

6.2.2 Impact on Performance

In this section, we present the impact on performance in
terms of cache hit ratio. Consider the impact of different
data layout methods. As stated in Section 3, the impact of
cache hit ratio is not integrated into the problem model
directly. However, since the goal of the problem is to reduce
intervals between consecutive cache writes in the same
cache blocks, a solution to this problem helps to reduce the
reuse instance for each cache block, and naturally benefits

the program locality. This is confirmed by the experiments.
As shown in Fig. 6b, compared to the default data layout,
both proposed data layout methods can improve the cache
hit ratio slightly under the same refresh schemes for all
benchmarks. In addition, the ILP method works slightly bet-
ter than the heuristic method.

Now consider the impact of different refresh schemes.
Compared to the full-refresh scheme, both the dirty-refresh
and N-refresh schemes decrease cache hit ratio with the
same data layout methods. The dirty-refresh scheme only
refreshes dirty blocks and thus content of non-dirty blocks
are lost after untouched for the retention time. The N-
refresh scheme only refreshes for at most once, and thus
content of blocks are lost after untouched for two retention
periods. Data losses in cache blocks lead to the decrement
in cache hit ratio. Combining the impact of both data lay-
out methods and refresh schemes, compared to the FR
method, the DR-DL and NR-DL methods slightly decrease
the cache hit ratio by 2.3 and 1.6 percent respectively.

The impact on cache hit ratio affects the performance, as
shown in Fig. 6a. Compared to the default data layout, the
proposed data layout can always reduce the execution
cycles with the same refresh schemes. However, compared
to the full-refresh scheme, both the dirty-refresh and N-refresh
increase the execution cycles with the same data layout
methods. This is consistent with the impact on cache hit
ratio. Combining the impact of both data layout methods
and refresh schemes, the DR-DL method increases the exe-
cution cycles by 3.9 percent while the NR-DL method
increases the execution cycles by 4.1 percent compared to
the FR method.

Fig. 6. Impact on performance. A negative value indicates that the ILP method cannot obtain the result for the corresponding benchmark within three
days. (a) Comparison of execution cycles on data cache. All results are normalized to the FR method. (b) Comparison of hit ratio on data cache.

Fig. 5. Impact on energy efficiency. All results are normalized to the FR method. A negative value indicates that the ILP method cannot obtain the
result for the corresponding benchmark within three days. (a) Comparison of active refresh operations. (b) Comparison of dynamic energy consump-
tion on data cache.
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6.2.3 Evaluation Based on Partial Traces

Here we evaluate partial traces for six benchmarks, since it is
very hard to obtain the ILP optimal results for their traces.We
use the first 10, 30, 15, 25, 1, and 25 percent traces for adpcm,
blit, engine, fir, g3fax, and pocsag, respectively. We evaluate the
proposedmethods inmeasure of dynamic energy and perfor-
mance respectively. As stated previously, the reduction of
dynamic energy is mainly due to the reduction of active
refresh, and the improvement of performance is mainly due
to the increment of cache hit ratio. Hence, we only present the
evaluation results for active refresh and cache hit ratio.

Fig. 7a shows the comparison of active refresh opera-
tions. There are two observations. First, compared to the
default data layout method, the proposed heuristics based
data layout method can consistently reduce the number of
active refresh under different refresh schemes. In addition,
the proposed ILP based data layout method outperforms
the heuristic method for all benchmarks. Second, among
all three refresh schemes, both dirty-refresh and N-refresh
schemes can consistently reduce more active refresh
than the full-refresh scheme. It is found that for all partial
traces, the N-refresh scheme can reduce more active
refresh than the dirty-refresh scheme. It also shows that, the
ILP method can reduce more active refresh than the heuris-
tic method under all refresh schemes. This is because the
ILP method pursues the optimal results.

Fig. 7b shows the comparison of cache hit ratio. There are
two observations. First, compared to the default data layout
method, the proposed heuristics based data layout method
can consistently improve the program locality under differ-
ent refresh schemes. In addition, the proposed ILP based
data layout method outperforms the heuristic method for
all benchmarks. Second, compared to the full-refresh scheme,
both dirty-refresh and N-refresh schemes degrade the cache
hit ratio with the default data layout method. This is
because that, the latter two schemes invalidate more cache
blocks, which leads to more cache misses. However,
together with the proposed data layout methods, the pro-
gram locality is close to the baseline.

7 SENSITIVITY ANALYSIS

We have conducted a set of experiments to evaluate the
sensitivity of the proposed methods to cache block size,
cache size, write latency, retention time, and the value of
N for N-refresh scheme. For each sensitivity evaluation, we
use the parameters shown in Table 6. We evaluate the

proposed methods in measure of dynamic energy and per-
formance respectively. We present the evaluation results for
active refresh and cache hit ratio in this section.

7.1 Sensitivity of Cache Block Size

Fig. 8a shows the active refresh operations under different
cache block size. There are three observations. First, com-
pared to the default data layout method, the proposed data
layout method can consistently reduce the number of active
refresh under different cache block size. Second, among
all three refresh schemes, both dirty-refresh and N-refresh
schemes can consistently reduce more active refresh opera-
tions than the full-refresh scheme. Third, as the cache block
size becomes larger, the number of required active refresh
decreases. This is because that, with the total cache size
unchanged, larger cache block size indicates less cache
blocks, and less cache blocks indicate less refresh operations.

Fig. 8b shows the cache hit ratio under different cache
block size. There are three observations. First, compared to
the default data layout method, the proposed data layout
method can consistently improve the program locality
under different cache block size. Second, compared to the
full-refresh scheme, both dirty-refresh and N-refresh schemes
degrade the cache hit ratio. This is because that, the latter
two schemes invalidate more cache blocks, which leads to
more cache misses. Third, as the cache block size becomes
larger, the dirty-refresh and N-refresh schemes have a smaller
influence on cache hit ratio. This phenomenon is mainly
due to the fact that, with the total cache size unchanged,
larger cache block size indicates less cache blocks and thus
less cache blocks invalidated by the latter schemes.

7.2 Sensitivity of Total Cache Size

Fig. 9a shows the active refresh operations under different
cache size. There are four observations. First, compared to
the default data layout method, the proposed data layout
method can consistently reduce the number of active
refresh under different cache size. Second, among all three
refresh schemes, both dirty-refresh and N-refresh schemes
can consistently reduce more active refresh operations than
the full-refresh scheme. Third, as the cache size becomes
larger, the number of required refresh operations
increases. This is because that, given the cache block size,
a large cache size indicates more cache blocks and thus
more refresh operations. Fourth, when the cache size is
larger than 32 KB, the number of required active refresh

Fig. 7. Evaluation of partial traces. (a) Comparison of active refresh operations. Normalized to the FR method. (b) Comparison of cache hit ratio.
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operations almost remains unchanged. This phenomenon
is mainly due to the fact that, for these benchmarks, a
data cache of 32 KB is large enough such that additional
cache space is rarely used.

Fig. 9b shows the cache hit ratio under different cache
size. There are three observations. First, compared to the
default data layout method, the proposed data layout
method can consistently improve the program locality
under different cache size. Second, when the cache size is
larger than 16 KB, the cache hit ratio almost remains
unchanged. This phenomenon is mainly due to the fact that,
for these benchmarks, a data cache of 32 KB is enough, and

additional cache space are rarely used. Third, in general, the
N-refresh scheme obtains slightly better program locality
than the dirty refresh scheme.

7.3 Sensitivity of N for the N-Refresh Scheme

Fig. 10a shows the active refresh operations under differ-
ent values of N. There are three observations. First, com-
pared to the default data layout method, the proposed
data layout method can consistently reduce the number
of active refresh under different value of N. Second, as the
value of N becomes larger, the number of required active
refresh operations increases. This is because that, a larger

Fig. 9. Sensitivity analysis of total cache size. (a) Comparison of active refresh operations. Normalized to the FR method in 64-byte block size.
(b) Comparison of cache hit ratio.

Fig. 8. Sensitivity analysis of cache block size. (a) Comparison of active refresh operations. Normalized to the FR method in 32 KB cache size.
(b) Comparison of cache hit ratio.

Fig. 10. Sensitivity analysis of the value of N. In the figures, nR represents the NR method with the value of N is n; nR-DL represents the
NR-DL method with the value of N is n. (a) Comparison of active refresh operations. Normalized to the FR method. (b) Comparison of cache
hit ratio.
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value of N indicates more refresh operations for each
interval, and thus more refresh operations are conducted.
Third, as the value of N becomes larger, the proposed
data layout method works better since the optimization
space becomes larger.

Fig. 10b shows the cache hit ratio under different values
of N. There are two observations. First, compared to the
default data layout method, the proposed data layout
method can consistently improve the program locality
under different value of N. Second, as the value of N
becomes larger, the cache hit ratio increases. This because
that, a large value of N indicates more refresh operations for
each interval, and thus less cache blocks are invalidated.

7.4 Sensitivity of Write Latency

We have conducted the sensitivity analysis of write latency.
Note that it is not easy to tune the parameters due to the
high complexity of the MTJ model. Therefore, a simulated
range of write latency are used to conduct the sensitivity
analysis for the proposed methods.

Fig. 11a shows the active refresh operations under dif-
ferent write latencies. There are two observations. First,
compared to the default data layout method, the pro-
posed data layout method can consistently reduce the
number of active refresh under different write latencies.
Second, as the write latency becomes longer, the number
of required active refresh operations increases. This is
mainly due to the fact that, as the write latency becomes
longer, the execution time becomes longer and thus
more refresh operations are required.

Fig. 11b shows the cache hit ratio under different
write latencies. It is found that, compared to the default
data layout method, the proposed data layout method
can consistently improve the program locality under dif-
ferent write latencies.

7.5 Sensitivity of Retention Time

We have conducted the sensitivity analysis of retention
time. Note that it is not easy to tune the parameters due to
the high complexity of the MTJ model. Therefore, a simu-
lated range of retention time are used to conduct the sensi-
tivity analysis for the proposed methods.

Fig. 12a shows the active refresh operations under differ-
ent retention times. There are two observations. First, com-
pared to the default data layout method, the proposed data
layout method can consistently reduce the number of active
refresh under different retention times. Second, as the reten-
tion time becomes larger, the number of required active
refresh operations decreases. In the meantime, the improve-
ment of the proposed data layout method degrades since
the optimization space is more limited.

Fig. 12b shows the cache hit ratio under different retention
times. There are two observations. First, compared to the
default data layout method, the proposed data layout
method can consistently improve the program locality under
different retention times. Second, as the retention time
becomes longer, the dirty-refresh and N-refresh schemes has
less impact on program locality. This is because that, as the
retention time becomes larger, the number of cache misses
due to these two incomplete refresh schemes decreases.

Fig. 11. Sensitivity analysis of write latency. (a) Comparison of active refresh operations. Normalized to the FR method with write latency of four
cycles. (b) Comparison of cache hit ratio.

Fig. 12. Sensitivity analysis to different retention times. (a) Natural logarithm of active refresh operations, normalized to the FR method with retention
time of 53,000 cycles (26:5ms). (b) Comparison of cache hit ratio.
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8 RELATED WORK

In this section, we first discuss priorwork that aims to reduce
the negative effects of STT-RAM caches. Then, we discuss
prior work that aims to reduce the negative effects of refresh.

8.1 Prior Work on STT-RAM Caches

Researchers are motivated to apply STT-RAM as on-chip
caches to improve the overall system performance and
energy efficiency. A lot of work has been done to address
the slow write speed and high write energy on STT-RAM.
An energy efficient write termination scheme is proposed
in [2]. A dual-write-speed cache design is proposed in [3]
to improve the performance while reducing the average
STT-RAM write energy consumption. To take advantage of
both SRAM and STT-RAM, hybrid cache architectures
have been studied and evaluated in recent work [4], [14],
[15], [16], [17]. Software assisted techniques have been pro-
posed to enhance the efficiency of hybrid cache [18], [19].
These studies show that caches built with multiple mem-
ory technologies have the potential to outperform its coun-
terpart with single technology.

Recently, Smullen et al. [5] propose to relax the non-
volatility property of STT-RAM by shrinking the STT-RAM
cell surface area. This relaxation can improve the write per-
formance and write energy of STT-RAM. Multi-retention
level STT-RAM cache designs are proposed [6] to exploit
the optimization space. An application-driven study to
determine the retention time is conducted in [7]. They also
propose to refresh only dirty data blocks. In [20], a cache-
coherence enabled adaptive refresh is proposed to minimize
the number of refresh operations for volatile STT-RAM
caches in chip multiprocessor systems. In comparison, this
paper presents a compilation based approach for refresh
minimization for the first time.

8.2 Prior Work on Refresh Schemes

The literature on refresh schemes mainly targeted at DRAM.
Previous works can be roughly classified into three catego-
ries. The first category exploited the fact that opening a
DRAM row causes it to be refreshed, and proposed to asso-
ciate each DRAM row with a timeout counter to separately
track the lifetime of each row [21], [22]. This asynchronous
refresh scheme avoids unnecessary refresh operations. All
three refresh schemes discussed in this paper exploit similar
observations. The second category proposed to mark
unused DRAM rows through software and to present them
from being refreshed [23]. All three refresh schemes dis-
cussed in this paper exploit similar observations by only
refreshing valid cache blocks. The third category proposed
to take process variation into account, and to refresh DRAM
on a finer block-based granularity with refresh intervals
varying between blocks [23], [24]. In [25], [26], redundancy
is employed to tolerate lower refresh rates, which is orthog-
onal to this work.

9 CONCLUSION

This paper proposes a compilation based approach to mini-
mize the number of refreshes in volatile STT-RAM cache by
re-arranging the data layout. A heuristic method as well as
an ILP formulation is proposed. A large set of experiments

are conducted to evaluate the proposed approach under dif-
ferent refresh schemes. These experiments show that the
proposed approaches can improve the energy efficiency of
volatile STT-RAM cache while maintaining the performance
for all refresh schemes.
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