
More Apps, Faster Hot-Launch on Mobile Devices via
Fore/Background-aware GC-Swap Co-design
Jiacheng Huang

jiacheng.huang@my.cityu.edu.hk
City University of Hong Kong &

Wuhan University
Hong Kong, China

Yunmo Zhang
yunmo.zhang@my.cityu.edu.hk
City University of Hong Kong

Hong Kong, China

Junqiao Qiu
junqiqiu@cityu.edu.hk

City University of Hong Kong
Hong Kong, China

Yu Liang
yulianglenny@gmail.com

ETH Zürich
Zürich, Switzerland

Rachata Ausavarungnirun
r.ausavarungnirun@gmail.com
King Mongkut’s University of
Technology North Bangkok

Bangkok, Thailand

Qingan Li∗
qingan@whu.edu.cn
Wuhan University
Wuhan, China

Chun Jason Xue
jason.xue@mbzuai.ac.ae

Mohamed bin Zayed University of
Artificial Intelligence

Abu Dhabi, United Arab Emirates

Abstract
Faster app launching is crucial for the user experience on
mobile devices. Apps launched from a background cached
state, called hot-launching, have much better performance
than apps launched from scratch. To increase the number
of hot-launches, leading mobile vendors now cache more
apps in the background by enabling swap. Recent work also
proposed reducing the Java heap to increase the number of
cached apps. However, this paper found that existing meth-
ods deteriorate app hot-launch performance while increas-
ing the number of cached apps. To simultaneously improve
the number of cached apps and hot-launch performance,
this paper proposes Fleet, a foreground/background-aware
GC-swap co-design framework. To enhance app-caching ca-
pacity, Fleet limits the tracing range of GC to background
objects only, avoiding touching long-lifetime foreground ob-
jects. To improve hot-launch performance, Fleet identifies
objects that will be accessed during the next hot-launch and

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0386-7/24/04. . . $15.00
https://doi.org/10.1145/3620666.3651377

uses runtime information to guide the swap scheme in the
OS. In addition, Fleet aggregates small objects with similar
access patterns into the same pages to improve swap effi-
ciency. We implemented Fleet in AOSP and evaluated its
performance with different types of apps. Experimental re-
sults show that Fleet achieves a 1.59× faster hot-launch time
and caches 1.21× more apps than Android.

CCS Concepts: • Software and its engineering; • Com-
puter systems organization → Embedded systems;

Keywords: Garbage Collection, Operating Systems, Memory
Management, Mobile Systems
ACM Reference Format:
Jiacheng Huang, Yunmo Zhang, Junqiao Qiu, Yu Liang, Rachata
Ausavarungnirun, Qingan Li, and Chun Jason Xue. 2024. More
Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-
aware GC-Swap Co-design. In 29th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,
USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3620666.3651377

1 Introduction
Mobile devices have become an indispensable part of daily
life for everyone today. Mobile device users often switch
among apps. The app launch performance, therefore, is a
crucial metric of the user experience [41]. To enhance the
app launch performance, Android caches apps in the back-
ground whenever there is sufficient memory [32, 33], while
interacting with users with the app in the foreground, as
shown in Figure 1. When the user switches to an app al-
ready cached in the background, Android directly moves

https://doi.org/10.1145/3620666.3651377
https://doi.org/10.1145/3620666.3651377
https://doi.org/10.1145/3620666.3651377

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Huang, Zhang, Qiu, Liang, Ausavarungnirun, Li, and Xue

Background

4

Hardware
Resources DRAM CPU

Android
System

Linux Kernel

Android Runtime

User
Application

…

…

𝐴𝑃𝑃1 𝐴𝑃𝑃2 𝐴𝑃𝑃𝑛

Hardware
Resources DRAM CPU

Android
System

APPs …

…

hot
launch

BackgroundForeground

Power

Improvement:

1. what is “fore & back-ground application”

2. what is “hot launch”

3. why caching capacity is important for android

字少一些，例如用标
识不同（实心空心）

Linux

Android Runtime (ART) Garbage Collection (GC)

Swapping

Figure 1. Architecture of Android systems.

it to the foreground, called hot-launch [41]. Hot-launch is
much faster than launching an app by creating a new pro-
cess, called cold-launch because the former does not require
additional initialization work.
To benefit more from the hot-launch, there have been

two directions. First, enabling the swap provided by the
Linux kernel to cache more apps. The swap extends the avail-
able memory resources by offloading the least-recently-used
(LRU) pages from the main memory to the swap partition [4–
6, 13, 33, 54]. Second, recent work Marvin [32] proposes to
cache more apps by separating the reference information
from the object and keeping it in memory after the object has
been swapped out. However, while both enabling swap and
Marvin increase the number of cached apps, this paper found
that the hot-launch time deteriorates significantly, especially
for tail latency. This is because, existing works essentially
use the native LRU-based swap mechanism, which is agnos-
tic of app re-launching. It may swap out memory pages that
are least recently used but required during the hot-launch
stage. This paper aims to improve hot-launch performance
while simultaneously caching more apps.

Tomaximize app caching capacity and improve hot-launch
performance, this paper proposes Fleet, a fore/background-
aware GC-swap co-design framework. The idea is motivated
by two key fore/background-related observations, as de-
picted in §4: (i) The lifetime of foreground objects (i.e., ob-
jects allocated when the owner app runs in the foreground)
is much longer than that of background objects (i.e., ob-
jects allocated when the owner app runs in the background).
Hence it will be more efficient to conduct GC on background
objects only when an app is in the background; (ii) Upon
hot-launches, objects allocated in the immediately preceding
foreground state and objects close to the GC roots are more
likely to be re-accessed and can be identified through run-
time information. These objects can be cached in memory
to facilitate hot-launches.
Based on these observations, Fleet is proposed, which

consists of two components: (i) Background-object GC (BGC),
which limits the tracing range of the garbage collector to
background objects only, avoiding touching the foreground
objects. This approach minimizes the conflict between GC
and the swap, maximizing the caching capacity for apps;
(ii) Runtime-Guided Swap (RGS), which adaptively guides

the swap scheme using runtime information. It identifies
objects that will be re-accessed during the next hot-launch
and adjusts the swap scheme to cache these identified objects
in memory.

We implement Fleet on Android. The experimental results
show that, on average, Fleet can increase the number of
maximum cached apps by 21% compared to the original
Android. Compared to Marvin, Fleet improves the tail hot-
launch performance by 4.45× on average. Additionally, Fleet
has a better ability to cache apps by 2× for apps with small
objects. This paper makes the following contributions:

• We observe that when an app is in the background, its
foreground objects occupy a larger memory footprint and
have a longer lifetime compared to its background objects;

• We observe that some special objects occupy a large pro-
portion of object re-accesses during the hot-launch, and
these special objects can be determined;

• Based on the first observation, we propose a GC method
that restricts the tracing range to background objects only
to mitigate the conflict between GC and the swap mecha-
nism, to cache more apps in memory;

• Based on the second observation, we propose a swap
scheme that selectively keeps objects likely to be used
during hot-launch in memory, to improve the hot-launch
performance.

2 Background
In this section, we introduce how Android launches
apps (§2.1) and the memory management involved in app
launching, including GC and swap (§2.2).

2.1 Hot-launch is crucial for mobile user experience
Android typically has one launched app in the foreground,
which allows interaction with the user [26, 34, 41]. There
are two ways to launch apps: hot-launch and cold-launch. As
shown in Figure 1, hot-launch refers to the app being directly
switched from the background to the foreground, while cold-
launch refers to the app starting with a new process creation.
Hot-launch is more desirable in terms of user experience be-
cause it offers shorter launch latency. Using the experimental
setup detailed in §6, we measure the duration of hot-launch
and cold-launch for our tested apps. The launch time is the
duration until the first frame is displayed, which is measured
by the Android Debug Bridge (ADB) tool [7, 8]. The cold-
launch time is obtained by explicitly terminating apps before
the launch. We repeat the launch 20 times for each test case
and calculate the average and standard deviation. Figure 2
shows that hot-launch significantly outperforms cold-launch.
For example, the average hot-launch time for Twitter is 273
ms, while the cold-launch time is 2390 ms, which is 8.75×
longer than the hot-launch.

The speedup from the hot launch is crucial for the mobile
user experience. Previous studies on user experience in the

More Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-aware GC-Swap Co-design ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Tw
itte

r

Fa
cebok

Insta
gram

Telegram
Line

Yo
utube

TikTok

Spotify
Tw

itc
h
Rave

BigoLive

Amazo
nShop

GoogleMaps

Chrome

Fir
efox

LinkedIn

AngryBird
s

CandyCrush

Average
0

1000

2000

3000

4000

5000

L
a
u
n
c
h
 t

im
e
 (

m
s
)

Hot-launch Cold-launch

Figure 2. The average hot-launch and cold-launch times.
The hot-launch is significantly faster than the cold-launch
for all tested apps.

mobile context [1, 2, 22] report that delays in the range of
hundreds of milliseconds are perceivable by users. Accord-
ing to a quantified study on the impact of response time on
user experience in the human-computer interaction com-
munity [35, 44], user productivity remains unaffected only
when the response time is below 150 milliseconds. If the
response time exceeds 150 milliseconds, users become aware
of the delay [44]. The issue of hundred-millisecond delays
has also become central to the memory management and
scheduling efforts of many mobile devices [23, 29, 45].

2.2 Two-layer memory management
Android uses the Android Runtime (ART) to execute apps
and utilizes Linux to manage hardware resources (Figure 1).
Each app runs in an independent ART instance. ART is an
implementation of a Java virtual machine that incorporates
a garbage collection (GC) mechanism to manage the app’s
dynamic memory [20, 52]. At the same time, Linux extends
memory capacity through the swap mechanism, which can
offload cold memory to a swap partition. This section will
introduce the GC and swap separately.
Garbage collection. ART employs a tracing-based concur-
rent copying GC [10]. The GC performs liveness analysis of
objects by traversing the object reference graph and copies
live objects to a new memory location. Here is a list of GC
terminologies used in the paper:
• Region: A segment of continuous memory. The region
from which the GC copies objects is called the from-region,
while the region to which the GC copies objects is called
the to-region;

• Roots: A group of special objects that directly or indirectly
reference all objects used by the program;

• Mutator thread: All app threads, excluding the GC thread;
• Read barrier: A piece of code executed by mutator threads
concurrently with the GC thread. It could copy objects to
the to-region whenever accessing an object;

• Write barrier: A piece of code that is executed whenever a
mutator thread writes an object;

• Card table: An array where each byte represents some
objects corresponding to a range of continuous addresses.

Linux swap. As described in §2.1, Android aims to benefit
from hot-launches by caching apps in memory. However,

Tw
itte

r

Facebok

Insta
gram

TelegramLine

Youtube

Spotify
Tw

itc
h
Rave

BigoLive

AmazonShop

GoogleMaps

Chrome
Fir

efox

LinkedIn

AngryBird
s

CandyCrush

Average
0

300
600
900

1200
1500

9
0
th

 h
o
t-

la
u
n
c
h
 (

m
s
)

7694
6131

1677
2513

7168
11401

2111
2589

2682
2831

w/o swap w/ swap Marvin

Figure 3. The 90th percentile tail hot-launch time of Marvin
and Linux swap. Both of these methods deteriorate the hot-
launch performance compared to the baseline without swap.

caching more apps is challenging due to the limited mem-
ory capacity of mobile devices. Therefore, Android utilizes
swap to enable more memory than the physical DRAM ca-
pacity available. When memory pressure becomes high, the
swap mechanism offloads the least-recently-used pages to
the swap partition [34, 51].

Nowadays, the number of apps is rapidly increasing, and
each app is occupying more memory [39, 41]. The increas-
ing speed of DRAM capacity cannot match the significantly
growing memory requirements of mobile apps [53]. In or-
der to cache more apps in the background, enabling swap
has become the default and widespread setup for Android
devices. Mainstream mobile device vendors, such as Sam-
sung, Huawei, and OPPO, have enabled swap in their smart-
phones [4, 6, 13].
However, swap cannot efficiently work with GC in An-

droid to achieve a desirable caching capacity because the
pages swapped out would be swapped back due to the trac-
ing procedure of GC. To address this issue, Marvin [32] pro-
poses to mitigate the conflict between GC and swap using
a bookmarking GC [27]. Marvin saves corresponding ref-
erences for each swapped-out object, allowing it to locate
live objects based on the references without touching and
swapping them back. Therefore, Marvin can improve the
caching capacity of Android.

3 Motivation
In this section, we study the limitations of existing works
(§3.1) and identify two issues of the Linux swap that lead to
their inferior performance on Android (§3.2).

3.1 The performance of hot-launch deteriorates
when more cached apps are enabled

There are two methods to cache more apps in Android: (i)
Linux swap and (ii) Marvin [32]. While these methods enable
more apps to be cached in the background, they sacrifice the
hot-launch performance. Using the experimental setup de-
scribed in §7.2, we measure the tail hot-launch performance
of these two methods.
Tail hot-launch in Linux swap.As depicted in Figure 3, the
hot-launch time is slowed by several hundred milliseconds
due to the swapped pages. For example, Instagram takes

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Huang, Zhang, Qiu, Liang, Ausavarungnirun, Li, and Xue

Figure 4. The accessed objects over time. Initially, we start
the Amazon shop in the foreground. Then, we switch it to the
background at 20 seconds. During its run in the background,
a GC occurs at 37 seconds. Finally, we switch it back to the
foreground at 53 seconds.

1027 ms to complete a hot-launch with swap enabled, while
it only takes 147 ms without swap. The hot-launch becomes
7× slower after enabling swap. In the following §3.2, we will
conduct a detailed analysis to identify the root causes of the
low hot-launch performance when Android enables swap.
Tail hot-launch inMarvin. Figure 3 also demonstrates that
Marvin could experience several seconds of delay during tail
hot-launch. Despite its ability to cache more apps, Marvin
fails to achieve the desired hot-launch performance. This
is due to three drawbacks of Marvin: (i) It requires a long
stop-the-world (STW) pause time to maintain consistency
between the separated reference information and objects;
(ii) Marvin induces swap amplification due to analyzing at
object granularity while swapping at page granularity; (iii)
Marvin employs an LRU-based swap scheme that is agnostic
to whether or not the evicted page will be used during the
hot-launch stage.

In summary, the ultimate challenge is:How can we main-
tain or even improve the hot-launch performance while
caching more apps? This is the aim of this paper.

3.2 Analysis of the Linux swap in Android
Android directly utilizes the existing LRU-based swap
scheme in Linux. However, the LRU-based scheme is de-
signed for general workloads from the Linux perspective
and neglects the specific characteristics of Android. In this
section, we will analyze the challenges of enabling Linux
swap in Android.
We conducted a motivational experiment, as shown in

Figure 4. First, we started the Amazon shop in the foreground.
Then, we switch it to the background after 20 seconds. Finally,
we switch it back to the foreground at 53 seconds (through a
hot-launch). During this experiment, we assign an increasing
object ID to each object based on their allocation order and
sample the object access every 100 accesses. Based on the
results, we uncovered two issues using the LRU-based swap
scheme for Android apps.

First, the GC may offset the effects of swapping in
terms of caching more apps. Figure 4 illustrates that when
the app is in the background, only a small portion of objects
are accessed in memory, while most other objects are least
recently used. However, when a GC is triggered (at around
37 seconds), there is a spike in accessed objects due to the
tracing work of GC, even though they are not necessarily
used by the app mutator threads. Due to GC, the LRU pages
will be swapped back into memory, leading to high memory
pressure, which may induce terminations of cached apps.

Second, the hot-launch process may be delayed as the
necessary pages could be swapped out beforehand by the
LRU-based swap mechanism. Figure 4 shows that when
the app is in the background, there aremany LRU objects, and
most of the memory could be safely swapped out according
to the LRU assumption. However, during the hot-launch
stage (at around 53 seconds), the app needs to access many
objects that haven’t been used recently. Then, the hot-launch
process may be blocked due to accessing multiple pages that
have been swapped out.
The on-demand swap-in from the swap partition is sig-

nificantly slower than reads from the DRAM. We measure
the performance of both the DRAM and the swap partition.
We utilize tinymembench [16] and FIO [17] to test the read
bandwidth of the DRAM and the flash-based swap partition.
The experimental results indicate that the DRAM bandwidth
is 9182.7 MB/s, whereas the read bandwidth of the swap
partition is 20.3 MB/s. The performance of the DRAM is
approximately 452× faster than that of the swap partition.

In summary, the LRU-based swap in Linux does not work
well for Android apps, neither for caching more apps nor
for achieving fast hot-launch. The Marvin work partially
addresses the first issue but fails to address the second one.
As a result, existing works cannot simultaneously maximize
app caching capacity and improve hot-launch performance.

4 Observations
As stated in the analysis in §3.2, app state in mobile devices is
either foreground or background, which the prior Linux swap
is agnostic to. In this section, we present three observations
of Android apps related to their foreground and background
states.

4.1 Fore/background object characteristics
Due to the significant change in an app’s behavior when it
switches from the foreground to the background (as shown
in Figure 4), we examine the distinct states of objects before
and after the switch to the background in this section. We
categorize all objects into two types according to the owner
app’s state when they are allocated:

• Foreground objects (FGO): The objects that are allocated
when the owner app is in the foreground state;

More Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-aware GC-Swap Co-design ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

2 4 6 8

1
0

1
2

1
4

>
1

5

Lifetime (GC count)

10

20

30

40

P
e
rc

e
n
ta

g
e
 (

%
)

Foreground
objects

(a) Foreground object lifetime

2 4 6 8

1
0

1
2

1
4

>
1
5

Lifetime (GC count)

10

20

30

40

P
e
rc

e
n
ta

g
e
 (

%
)

Background
objects

(b) Background object lifetime

Tw
itt

er

Fa
ce

bok

Insta
gra

m

Te
legra

m
Line

Yo
utu

be

TikTo
k

Spotif
y

Tw
itc

h
Rave

BigoLive

Am
azo

nShop

GoogleMaps

Chro
m

e

Fir
efox

Linke
dIn

Angry
Bird

s

Candy C
ru

sh

Avera
ge

0
30
60
90

120

M
e
m

o
ry

 f
o
o
tp

ri
n
t

(M
B

)

Foreground objects Background objects

(c) Memory footprint

Figure 5. Foreground and background objects have different
lifetime and memory footprints. Foreground objects have
longer lifetimes and occupy the majority of memory. In (a)
and (b), the last bar indicates the percent of alive objects
after 15 GC cycles.

• Background objects (BGO): The objects that are allocated
when the owner app is in the background state.

At themoment that an app switches to the background, all ex-
isting objects are considered FGO, while all newly allocated
objects after the switching are classified as BGO.

We measure the lifetime (GC count) of these two types of
objects while the app is in the background. Using Twitter as
an example, we start and use it for 10 minutes in the fore-
ground. Then, we switch it to the background and perform
an explicit GC every 15 seconds. After each GC, we calculate
the lifetime of each object as the number of GC cycles that
it survived. Finally, we generate the lifetime distribution of
FGO (Figure 5a) and BGO (Figure 5b), respectively. These
results show a significant disparity in the lifetime of FGO and
BGO. Most BGO are reclaimed within the first several GCs,
while more than 40% FGO still survive after 15 GC cycles.
One possible reason is that all BGO are newly allocated in
the background, which are younger and thus more likely to
become garbage [42]. Additionally, the number of FGO is
far more than BGO, as shown in Figure 5c. This is because a
background app is mostly inactive and only allocates a few
objects. Therefore, we draw the first key fore/background
related observation:When an app is in the background,
its FGO occupy a larger memory footprint and have a
longer lifetime compared to its BGO.
The existing ART uses a GC scheme that treats FGO and

BGO equally. However, based on our observation, the FGO
should not be visited by the GC as often as the BGO, since
most of them have a long lifetime.

Tw
itte

r

Facebok

Insta
gram

LinkedIn

AmazonShop

Average
0

10
20
30
40
50
60
70
80

R
e
-a

c
c
e
s
s
e
d
 r

a
te

 (
%

) NRO (D=2) FYO Both

(a) Re-accessed objects

0 2 4 6 8 10 12 14
Depth from roots

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 (

%
)

Access during launch

Memory footprint

(b) Depth analysis of NRO

Figure 6. The re-access analysis of NRO and FYO during
hot-launches. The larger the depth, the higher the re-access
ratio covered by the NRO, while the memory footprint also
increases. Because the re-access ratio increases faster than
the memory footprint for small depth values, we can select
a relatively small depth parameter to cover more re-access
with minimal memory footprint.

4.2 Fore/background object access pattern
As shown in Figure 4, a subset of FGO (accessed before 20
seconds) are re-accessed at 53 seconds during the hot-launch
procedure. In accordance with the nature of the Android
launch procedure, we identify two special types of FGO that
tend to be re-accessed during the hot-launches:
• Near roots objects (NRO): The objects for which the shortest
path to the roots is smaller than a depth parameter (defined
as 𝐷) in the reference graph are defined as NRO with the
depth distance. NRO could be different when selecting
different depth values;

• Foreground young objects (FYO): The objects allocated just
before an app is switched to the background.
We conducted an experiment to analyze the object re-

accessed during hot-launches. We start each tested app and
use it in the foreground for 10 minutes. Then, we switch the
app to the background. We obtain the FYO and NRO during
the first GC when the app is in the background (depicted
in §5.3). After 30 seconds, we switch the app back to the
foreground and record all accessed objects during the hot-
launch time. Finally, we calculate the re-access ratio of NRO
and FYO, as shown in Figure 6a. For these five tested apps,
NRO occupies around 50% re-access objects on average and
FYO is around 40%. NRO and FYO, combined, account for
68% of the total re-access objects on average.

We further analyzed the memory footprints of these two
types of objects for the five apps in Figure 6a. The average
memory percentages of NRO and FYO are 10.4% and 9.3%,
respectively, with a depth of 2. Together, they occupy 15.5%
of the heap memory because they share common objects.
Therefore, these two types of launch objects (NRO and FYO)
can cover the majority of demanded objects with a small
memory footprint. The second key fore/background related
observation is: NRO and FYO occupy a large proportion

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Huang, Zhang, Qiu, Liang, Ausavarungnirun, Li, and Xue

8 16 32 64 128 256 512
1024

2048
4096

8192
16384

32768
65536

131072
262144

Object Size (byte)

0

50

100

CD
F

(%
)

Page size

Twitter
Facebook
Youtube

Tiktok
Amazon
Google Maps

Candy Crush Saga
Firefox

Figure 7. The object size distribution. Due to the significant
size difference between objects and pages, co-designing GC
and swap is challenging.

of object re-accesses during hot-launches with a small
memory footprint.
We also analyzed the effect of the depth parameter for

NRO using Twitter, as shown in Figure 6b. With a larger
depth parameter, the re-access ratio of NRO is higher, but
its memory footprint also becomes larger. Regarding the
depth parameter, one key insight is that the re-access ratio
increases faster than the memory footprint for small depth
values. We can select a relatively small depth parameter to
cover more re-access with a small memory footprint.
NRO are likely to be reaccessed during the hot-launches

for two reasons. First, NRO is often accessed in the interme-
diate path of many other objects. Since the roots include all
objects an app could directly access, objects closer to the root
are more likely to be accessed when accessing other objects.
Second, GC usually starts simultaneously with a hot-launch,
and it will also access NRO. Android uses a dynamic memory
threshold to control GC. If the current memory usage is close
to the threshold, a new GC will be triggered. When an app
is in the background, the threshold is set to a value close
to the memory usage. However, during a hot-launch, many
new objects are created quickly, resulting in memory usage
larger than the threshold and triggering a new GC. This GC
will also access NRO.

FYO are also likely to be re-accessed because of their asso-
ciated foreground tasks. These tasks are apt to be suspended
in the background. When the app switches back to the fore-
ground, these suspended tasks resume and continue to access
the recently allocated young objects. Furthermore, the young
objects will be accessed more frequently than the others [18]
in general. Thus, FYO are also highly probable to be accessed
by the resumed foreground tasks during the hot-launch time.

4.3 The size mismatch between GC and swap
Another feature of Android is that most objects are small. We
analyzed the object size distribution for several popular com-
mercial apps in the app store market. As shown in Figure 7,
all tested apps exhibit similar object size distributions. The
swap mechanism operates at the granularity of a fixed-size

Android Runtime Linux Kernel

Background objects
Background-

object GC

Runtime-
guided swap

Swap
partition

Runtime
information

Foreground
objects

Figure 8. Overview of Fleet.

page, commonly 4 KB [12]. The majority of objects are signif-
icantly smaller than the page size. Due to the significant size
difference between objects and pages, co-designing GC and
swap is challenging. To address this challenge, our insight is
to group objects with similar access patterns into the same
page based on runtime information.

5 Fleet Design
5.1 Overview
Fleet is a cross-layer memory management framework that
aims to cache more apps and enable faster hot-launches
simultaneously. Figure 8 illustrates the twomain components
in Fleet’s design: (i) Background-object GC, a GC method
that collaborates with swap, and (ii) Runtime-guided swap, a
swap scheme that leverages runtime information to optimize
hot-launches.
Key idea. Driven by the observations presented in §4, Fleet
is designed based on two key ideas: (i) Since BGO is more
likely to become garbage than FGO, Fleet focuses on BGO
in background GC. The long-lifetime FGO, which occupies
most of the memory, can be safely swapped out. Therefore,
GC can minimize access to the swapped pages while freeing
garbage objects on time; (ii) Fleet identifies NRO, FYO, and
currently used objects based on the runtime information in
ART. The underlying swap can adjust its scheme to facilitate
access to these NRO and FYO, optimizing the performance
of hot-launches.
Background-object GC (§5.2). Background-object GC
(BGC) is designed to free garbage objects while avoiding
touching the swap pages when an app is in the background.
Unlike the existing GC in ART, which traces all objects, BGC
only traces BGO 1 .
Runtime-guided swap (§5.3). Runtime-guided swap (RGS)
is proposed to swap pages in order to extend memory capac-
ity while retaining hot-launch performance. RGS consists of
two steps. First, it utilizes a copy-based GC to identify the
NRO and FYO after an app switches to the background 2 .
During this GC, objects are also grouped into pages. Second,
RGS conveys the information of the grouped pages to the
Linux kernel. Guided by the runtime information, Linux can
actively swap out the grouped pages 3 , while caching pages
containing NRO and FYO in the main memory 4 .

More Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-aware GC-Swap Co-design ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Foreground
objects

Card
table

… …

Background
objects

1<<CARD_SHIFT

Clear card

Dirty card

Card to address

Root object

Normal object

Trace reference

No trace reference

Write
barrier

Figure 9. The BGC Framework. The app’s total objects are
divided into two categories: BGO and FGO. By employing a
card table, the BGC restricts the GC range to the BGO.

Workflow. Fleet starts working after an app is switched
to the background. First, Fleet waits for a specific time (de-
fined as 𝑇𝐵) to ensure the app runs in a stable background
state. Then, Fleet performs a full GC, classifying objects into
different types, such as NRO and FYO, based on runtime in-
formation. Objects are then grouped into pages according to
their classified types. Afterward, Fleet applies RGS to guide
the swap process. While running in the background, the app
employs BGC to free garbage objects. NRO and FYO objects
are cached until there are no other pages to be swapped out.
If a hot-launch occurs during this period, it would be fast
because NRO and FYO objects are grouped and cached in the
main memory. Once the app is switched to the foreground,
Fleet waits for a specific time (defined as 𝑇𝐹) to ensure that
the app runs in a stable foreground state. Finally, Fleet stops,
and the foreground app executes the same as a default An-
droid app.

5.2 Background-object GC
Existing ART mainly utilizes two types of GC: (i) Minor GC,
which frees garbage objects from newly allocated regions
after the last GC; (ii) Major GC, which frees garbage objects
from the entire Java heap. The existing major GC is not
suitable for background apps because it targets all objects
and calculates the live ratio of regions by fully tracing. We
propose BGC (Figure 9) to replace the existing major GC
when an app is in the background. BGC aims to free garbage
objects only from BGO to minimize access to the FGO. In this
section, we present the design of BGC. First, we explain how
to separate FGO and BGO. Then, we introduce a carefully
designed card table. Finally, we present BGC’s execution
procedure.
FGO & BGO separation. Fleet divides all objects into FGO
and BGO by adding a region-type flag to the metadata of
regions, indicating whether these regions contain FGO. After
an app is switched to the background, Fleet uses a full GC
to compact all FGO into specific regions (detailed in §5.3.1).
Simultaneously, Fleet also sets the region-type flag of the
regions to which all FGO are copied. Afterward, all objects
allocated while the app is in the background are classified

as BGO. These objects will be allocated in new regions that
are different from those already containing FGO. Therefore,
FGO and BGO can be organized in separate regions.
Card table for tracing BGO. To conduct liveness analysis
for BGO, we need to track all references from FGO to BGO.
BGC can identify these references by recordingmodifications
made to FGO, as all BGO are allocated after FGO.

To achieve this, we propose the use of an additional card
table to record all modified FGO, as shown in Figure 9. BGC
uses a shift instruction with the CARD_SHIFT value to trans-
late between the FGO address and the offset of the corre-
sponding byte in the card table. BGC records the modified
FGO using a designed write barrier. Whenever an object is
written, the write barrier first checks if the object belongs to
the FGO. If the object belongs to the FGO, the write barrier
code will find the corresponding byte in the card table by
using a shift instruction on the object’s address. Then, the
write barrier code will mark the byte as DIRTY. Finally, dur-
ing BGC execution, it can obtain all references from FGO
to BGO by checking the objects corresponding to the bytes
marked as DIRTY in the card table.
GC execution. As shown in Figure 9, the execution follows
these steps: Once FGO and BGO are separated into different
regions, BGC initializes its card table to empty. While the
app runs in the background, modified objects are recorded
in the card table using the designed write barrier. When a
GC starts, it scans all dirty bytes in the card table to identify
the FGO that have been modified while the apps are in the
background. The GC then adds all these modified FGO to
the root set. Next, the GC performs a tracing procedure to
find all objects that can be reached from the root set. During
the tracing procedure, if the BGC encounters a reference
to an object belonging to FGO, it considers this object as a
live object and does not access it. At the same time, it copies
all live BGO to new to-regions. Finally, the BGC releases
the memory of all from-regions containing the BGO. By
following this process, the BGC can free garbage objects in
BGO while minimizing access to the FGO.
Discussion on memory leak. BGC can efficiently free
garbage objects in background apps on time due to the long
lifetime and inactive nature of FGO, as observed in the life-
time distribution discussed in §4.1. In some cases, if neces-
sary, Fleet can resort to the original Android method of using
full tracing to clear garbage objects from the entire Java heap.
Nevertheless, even in such worst-case scenarios, Fleet still
benefits from reducing the frequency of full heap tracing for
background apps.

5.3 Runtime-guided swap
The existing Android system directly utilizes the native
LRU-based swap scheme provided by Linux without con-
sidering the mobile-specific characteristics of hot-launch
performance. The runtime-guided swap (RGS) is designed
to propose a new swap scheme that aims to achieve faster

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Huang, Zhang, Qiu, Liang, Ausavarungnirun, Li, and Xue

Design overview

7

…

reference Depth delimiterMutator thread GC thread

…

…

…

To regions

…

…

Others

Mark & Copy

Object

Dequeue

Breadth-first search (BFS)

Mark
queue

…

Scan

EnqueueLaunch

Inc
depth

WS

Depth
counter

Region
flag

Figure 10. The object grouping procedure of the RGS. It
groups objects into pages through a full GC.

hot-launch performance by taking into account runtime in-
formation, including NRO and FYO. RGS consists of two
steps: (i) Object grouping, a full GC process that classifies
objects based on runtime information and groups them into
pages; (ii) Page swapping, a system call that conveys infor-
mation about the grouped pages to the Linux kernel, thereby
achieving a hot-launch-friendly swap scheme.

5.3.1 Object grouping. RGS utilizes a full GC that consid-
ers the access pattern of objects to group them. The object
grouping operation begins after the app has been switched
to the background for a specified window of time (𝑇𝐵).
Classification.We will identify the NRO and FYO for the
next hot-launch, based on our observations in §4.2. Addition-
ally, in this section, we will introduce a new type of object
called working set (WS) objects. These WS objects are the
objects currently being used by the app. The WS type en-
sures that the necessary objects required for the app to run
in the background are not selected to be swapped out.

As shown in Figure 10, unlike the existing GC in Android,
which uses a depth-first search (DFS) algorithm to trace the
object reference graph, we utilize a breadth-first search (BFS)
algorithm with a first-in-first-out mark queue. Based on the
BFS algorithm starting from the roots, we perform a mark
operation for each traversed object.

Similar to the existing concurrent GC, we enable the read
barrier mechanism during the BFS-based traversal. Concur-
rently with the tracing and mark procedure of the GC thread,
mutator threads also perform the mark operation through
the read barrier whenever they access an object. The WS
objects can be differentiated by the thread that triggers the
mark operation. If an object is marked by mutator threads
(in their read barriers), it will be classified as a WS object.

In summary, during this GC procedure, themark operation
can classify objects into the following categories:

• NRO: We add a depth delimiter to the mark queue during
graph traversal. Additionally, we maintain a depth counter
throughout the traversal procedure. The depth counter
keeps track of the depth of the currently marked object
from the roots. If the depth counter is smaller than the
NRO threshold, we classify the marked object as an NRO;

• FYO: Because the group operation of RGS is the first GC
after the app is switched to the background, all objects
newly allocated between the group operation and the last
GC are considered FYO. In ART, there is a flag in the meta-
data of each region that indicates whether the region is
newly allocated after the last GC. By utilizing this flag, we
can determine whether an object is an FYO;

• WS objects: We obtain the thread ID of the current thread
during the mark operation.We compare the thread IDwith
that of the GC thread. If these thread IDs are different, we
identify the marked object as a WS object;

• Cold objects: All other objects are classified as cold objects.

Group into regions. As shown in Figure 10, a copy op-
eration is imposed on every object marked by the full GC.
The copy operation copies all reachable objects from from-
regions to to-regions. Unlike the existing ART, which treats
all to-regions equally, we propose three types of to-regions
corresponding to the classification of the object:

• Launch region: This region contains objects that will be
used in the next hot launch. We copy all NRO and FYO
objects to the launch region;

• WS region: This region contains objects that will be used
when the app is in the background. We copy all WS objects
to the WS region;

• Cold region: This region contains objects that will not be
used during the background and the hot launch. We copy
all cold objects to the cold region.

Based on the object classification, the copy operation selects
the corresponding type of region as the destination to-region
for every marked object. The ART uses the bump-pointer
allocator [10, 19] to continuously allocate objects in these
regions, resulting in objects with the same classification
being compactly grouped in their respective regions. Finally,
we obtain the rearranged pages by utilizing the memory
pages of the regions.

5.3.2 Page swapping. Based on the three types of regions
in the object grouping procedure, all FGO are grouped into
three types of pages: (i) Launch pages, (ii) WS pages, and
(iii) Cold pages. To achieve the interaction between ART
and Linux, we modified the existing madvise system call in
the Linux kernel and added two new options: COLD_RUNTIME
and HOT_RUNTIME. Therefore, we can convey the information
of these different types of pages to the underlying Linux
through the modified madvise system call.
Actively swap-out. After the object grouping procedure
finishes, RGS will make a madvise system call with the
COLD_RUNTIME option and provide the memory address
range of all cold regions as input values. The kernel part
of RGS will then identify all physical pages corresponding
to these specified memory address ranges. These physical
pages will be actively swapped to the swap partition to pre-
serve memory ahead of memory-pressure situations. As a

More Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-aware GC-Swap Co-design ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. Comparison methods.

Methods GC approach Swap approach
Granularity Scheme

Android [10] Native GC Page LRU

Marvin [32] Bookmark GC Object Object LRU

Fleet
Background-
object GC (§5.2)

Grouped
page (§5.3.1)

Runtime-guided
swap (§5.3)

result, RGS optimizes the swap-out mechanism by actively
swapping out cold regions when an app switches to the
background.
Cache the launch pages.While an app is in the background,
RGS will periodically execute the madvise system call with
the HOT_RUNTIME option on the memory of the hot regions.
RGS will find the corresponding physical pages for these
hot regions and move these pages to a highly used position
in the LRU queue in the Linux kernel. As a result, these
launch pages are unlikely to be swapped out, optimizing the
hot-launch performance.

6 Evaluation Methodology
Comparison schemes. We compare Fleet to default An-
droid [10] and Marvin [32], as summarized in Table 1. The
key differences between these methods are as follows:
Default Android: Android uses GC and swap as two indepen-
dent mechanisms. As mentioned in §3.2, this method has
two problems: (i) Low caching capacity due to conflicts be-
tween GC and swap, and (ii) Slow hot-launch due to sudden
swapping of multiple pages during launch.
Marvin: This method also co-designs GC and swap. Marvin
records the reference information of each object before swap-
ping it out. By utilizing the recorded reference information,
it does not need to access the objects during GC. However,
Marvin could not achieve desirable hot-launch performance
for three reasons: (i) Marvin uses object-granularity swap,
which is inefficient for swapping objects smaller than the
page size, (ii) maintaining the reference information requires
long stop-the-world pauses, and (iii) it does not consider the
suddenly accessed objects during hot-launch.
Fleet: This method is a collaborative design for GC and swap.
Fleet groups small objects into pages according to the run-
time information before swapping. Additionally, Fleet re-
solves the conflict between GC and swap by restricting the
GC range only to the background objects.
Parameter setting. Both Fleet and Marvin use the default
parameters, which are identical to the default Android pa-
rameters, in addition to the parameters proposed by their
method. Marvin includes a large object threshold parame-
ter. Based on this threshold parameter value, Marvin only

Table 2. Fleet’s default parameters.

Parameter description Symbol Setting

Maximum depth to the roots for NRO 𝐷 2
Wait time to start Fleet in the background 𝑇𝐵 10 seconds
Wait time to stop Fleet in the foreground 𝑇𝐹 3 seconds
CART_SHIFT for card address conversion - 10
Region size of the Java heap - 256 KB

Table 3. The commercial apps for evaluation.

App type App Description

Communication Twitter (X), Facebook, Instagram, Telegram, Line
Multi-media Youtube, Tiktok, Spotify, Twitch, Rave, BigoLive

Tools & utilities AmazonShop, GoogleMaps, Chrome, Firefox, LinkedIn
Games Angry birds classic, Candy crush saga

processes objects that exceed the threshold size. For our eval-
uation, we set the threshold parameter to 1024 bytes. The
configurations for Fleet are listed in Table 2.
Experimental platform. We use a Google Pixel 3 smart-
phone with 4 GB of Micron LPDDR4X RAM and an Octa-
core Qualcomm Snapdragon 845 processor. For the swap
partition, we employ a 2 GB flash-based block device. We
use the android-10.0.0_r1 branch of the Android Open
Source Project (AOSP) and the android-msm-crosshatch-4.9-
android10 branch of the Linux kernel.
Workloads.We utilize two types of apps: (i) The manually
created apps downloaded from the Marvin project [3]. These
apps have two parameters: object size and memory footprint.
Once these apps start, they allocate objects of the same size,
determined by the object size parameter, to occupy the spec-
ified memory footprint. We configure two types of object
sizes: small object apps (512 bytes) and large object apps
(2048 bytes). The memory footprint of each app is set to 180
MB. (ii) The most popular commercial apps from the Google
Play store, which cover four categories as shown in Table 3.

7 Evaluation Results
The evaluation of Fleet answers the following questions:
Q1: How many cached apps does Fleet improve by reduc-

ing the GC working set when an app is in the back-
ground (§7.1)

Q2: How much does Fleet improve the hot-launch perfor-
mance for different categories of apps? (§7.2)

Q3: What are the effects of Fleet on other crucial system in-
dicators such as user experience, CPU usage, memory
overhead, and energy consumption? (§7.3)

7.1 App caching capacity
To test the caching capacity, we evaluate manually created
apps to avoid any bias caused by differences in app implemen-
tations. Specifically, we continuously launch one additional

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Huang, Zhang, Qiu, Liang, Ausavarungnirun, Li, and Xue

0 4 8 12 16 20 24 28
No. of launched apps

0
3
6
9

12
15
18

No
. o

f a
ct
iv
e
ap

ps

Android
Marvin
Fleet

(a) Large object apps

0 4 8 12 16 20 24 28
No. of launched apps

0
3
6
9

12
15
18

No
. o

f a
ct
iv
e
ap

ps Android
Marvin
Fleet

(b) Small object apps

Tw
itt

er
Fa

ce
bo

k
In

st
ag

ra
m

Te
le

gr
am Lin

e
Yo

ut
ub

e
Ti

kT
ok

Sp
ot

ify
Tw

itc
h

Ra
ve

Bi
go

Liv
e

Am
az

on
Sh

op
Go

og
le

M
ap

s
Ch

ro
m

e
Fir

ef
ox

Lin
ke

dI
n

An
gr

yB
ird

s
Ca

nd
y

Cr
us

h
Tw

itt
er

Fa
ce

bo
k

In
st

ag
ra

m
Te

le
gr

am Lin
e

Yo
ut

ub
e

Ti
kT

ok
Sp

ot
ify

Tw
itc

h
Ra

ve
Bi

go
Liv

e
Am

az
on

Sh
op

Go
og

le
M

ap
s

Ch
ro

m
e

Fir
ef

ox
Lin

ke
dI

n
An

gr
yB

ird
s

Ca
nd

y
Cr

us
h

Launched apps

0
3
6
9

12
15
18

No
. o

f a
ct

iv
e

ap
ps Android w/o swap

Android w/ swap
Fleet

(c) Commercial apps

Figure 11. Caching capacity for different types of apps. (a)
shows that Fleet and Marvin have similar caching capacity
for manually created apps with large-size objects. (b) demon-
strates that Fleet has better caching capacity for manually
created apps with small-size objects. (c) illustrates that Fleet
outperforms Android in terms of caching capacity for com-
mercial apps.

app and count the number of remaining active apps after
each launch.
Since Marvin is only evaluated on large object apps, we

first present the caching capacity results for the large object
apps, as shown in Figure 11a. Fleet achieves a comparable
caching capacity to Marvin, as both can cache up to 18 apps,
which is approximately 1.3× the number of cached apps in
Android. This improvement is because Marvin and Fleet can
overcome the drawback of Android, where GC traces the
swapped objects. In comparison, Android starts to kill apps
when there are 11 cached apps and caches a maximum of 14
apps. Additionally, Figure 11b shows the caching capacity of
small object apps. For these apps, Fleet outperforms Marvin
by 2× in terms of maximum caching. Fleet can cache up
to 18 small object apps, which is the same as caching large
object apps. However, Marvin cannot handle small objects
smaller than its configured large object threshold and caches
a maximum of 9 small object apps. This result shows that
Fleet is not sensitive to object sizes, which can be attributed
to Fleet’s design that groups small objects into pages.
We also evaluate Fleet on commercial apps, as shown

in Table 3. To ensure a fair comparison, we only compare
Fleet against Android, as Marvin’s prototype does not fully
support commercial apps. According to our tests, Marvin

TikTo
k

Faceb
ookTwitc

h LineAvera
ge

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

No
. o

f o
bj
ec

ts
 a
cc

es
se

d
by

 G
C 1e6

Android
Fleet w/o BGC
Fleet w/ BGC

(a) GC range in the background

0
10
20
30
40
50
60

(A
nd

ro
id

)

1e4 Mutator GC

0 100200300400500600
Time (second)

0
10
20
30
40
50
60

(F
le

et
)

1e4

No
. o

f a
cc

es
se

d
ob

je
ct

s

(b) Accesses analysis of Twitch

Figure 12. The analysis of GC working set. Fleet reduces
the GC range when an app is in the background.

crashes after launching approximately four apps. The origi-
nal paper [32] also acknowledges that Marvin easily crashes
when running commercial apps. In this test, we sequentially
launch these apps in a round-robin sequence (from Twitter
to Candy Crush, as indicated on the x-axis of Figure 11c).
We use each app for 30 seconds and record the number of
active apps cached in the background. We report the results
from two cycles of launches. The results show that Fleet
can cache more apps than Android, both on average and
at best, regardless of whether Android enables swap or not.
Fleet can cache a maximum of 17 apps, which is 1.21× better
than Android with swap. This improvement validates the
effectiveness of Fleet’s strategies. Additionally, commercial
apps often consist of many small objects, which Fleet’s object
grouping mechanism can handle efficiently.
GC working set. To assess how Fleet improves caching
capacity by reducing the working set of background GC, we
measure the working sets of GC threads when an app is in
the background. We measure the number of objects accessed
by the GC thread during a single GC execution. Figure 12a
illustrates that, on average, the GC thread accesses approx-
imately 7 × 105 objects for Android. With BGC, Fleet can
reduce the working set of GC to 105 on average. Fleet’s re-
duction is approximately 7× of Android. Figure 12b presents
a more detailed measurement of accessed objects for Twitch.
We perform the same usage pattern on both Android and
Fleet. During these experiments, we switch Twitch to the
background at around 180 seconds and bring it back to the
foreground at about 480 seconds. This figure demonstrates
that when the app is in the background (180 to 480 seconds),
Fleet can significantly reduce the number of objects accessed
by the GC thread compared to Android.

7.2 Hot-launch performance
To assess Fleet’s hot-launch performance, we test the com-
mercial apps under memory pressure with about 10 back-
ground apps. We measure the hot-launch time as the du-
ration from the start to the first frame display, which can

More Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-aware GC-Swap Co-design ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0 5000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(a) Twitter

250 500 750
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(b) Facebook

0 2500 5000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(c) Instagram

500 1000 1500
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(d) Line

1000 2000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(e) Youtube

200 400 600
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(f) Spotify

0 5000
Hot-launch time (ms)

0

50

100
CD

F
(%

)
Android
Marvin
Fleet

(g) Twitch

0 1000 2000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(h) Amazon Shop

1000 2000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(i) Google Maps

500 1000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(j) Chrome

100 200
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(k) Firefox

500 1000 1500
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(l) Angry Birds

Twitter
Faceb

ook
Insta

gram LineYoutu
be
SpotifyTwitch

Amazon
Shop

GoogleMaps
Chrom

e
Firefo

x
AngryBirds

Avera
ge0

1

2
Sp

ee
du

p
of

 m
ed

ia
n

ho
t l

au
nc

h
tim

e

Marvin Fleet

(m)Median (50th) hot-launch time over Android

0 10 20 30
Java heap percentage

of the app (%)

1

2

3

Sp
ee

du
p

of
 m

ed
ia

n
ho

t l
au

nc
h

tim
e

AngryBirds

Twitter

(n) Fleet speedup

Figure 13. The hot-launch performance of commercial apps under high memory pressure.

be obtained using the ADB tool [7, 8]. We conduct 20 hot-
launches for each app. Additionally, between two launches,
we use other apps for 30 seconds to simulate the intermittent
usage pattern of users. We present the hot-launch times of
12 representative commercial apps in Figure 13. These 12
apps are selected to cover all app types in Table 3. We also
provide other hot-launch data, including the other 6 apps
and additional statistical characteristics in Appendix A.
From these results, we make three observations. First,

Fleet achieves the best hot-launch time among these three
approaches for almost all apps. As shown in Figure 13m,
the average speedup of the median hot launch time of Fleet
is 1.59× compared to Android and 2.62× compared to Mar-
vin. Taking Facebook as an example, the median hot launch
time for Fleet is 101 ms, which is 1.72× faster than Marvin
(174 ms) and 2.07× faster than Android (209 ms). Second,
Fleet displays significantly shorter tail launch times. The
90th percentile tail hot launch time of Fleet is 2.56× and
4.45× compared to Android and Marvin, respectively (More
details are shown in Figure 15a in Appendix A). For instance,
Android’s 90th percentile hot-launch time on Facebook is
622 ms, whereas Fleet’s 90th percentile launch time is 121
ms, which is 5.14× faster. Third, Figure 13n demonstrates a
positive correlation between the speedup achieved by Fleet
and the Java heap percentage of apps. This implies that Fleet
can provide greater benefits for apps with a higher Java heap
ratio. In summary, Fleet’s design, which involves swapping
with runtime information, enables it to achieve faster hot
launch latency.

7.3 Runtime performance
Frame rendering. In this part, we present the impact of
Fleet on the user experience, as measured by the jank ra-
tio [15] and frames per second (FPS). For this experiment,
we use all tested apps in the foreground state for one minute.
While using the app, we simulate human interaction by con-
tinuously swiping the screen using the ADB [7] tool, follow-
ing a predefined script. We profile performance information
during the experiment using the system trace [9] and analyze
the trace file using Perfetto [14]. To determine the number
of janks, we count occurrences where the time between two
rendered frames exceeds 16.7 milliseconds (equivalent to 60
frames per second) [15]. The jank ratio is calculated as the
proportion of janks to the total number of frames. Addition-
ally, we calculate the FPS results by dividing the number
of rendered frames by the duration. Figure 14 displays the
jank ratio and FPS results, respectively. Compared to An-
droid, Fleet exhibits a nearly identical average jank ratio and
FPS. Compared to Marvin, Fleet demonstrates a 19.9% im-
provement in the jank ratio and a 20.3% improvement in FPS
on average. Therefore, Fleet can deliver a user experience
comparable to the original Android.
CPU usage. We also measure the CPU usage of each app.
To do this, we launch an app, use it for 30 seconds, switch it
to the background for 30 seconds, and repeat this procedure.
Throughout this process, we utilize the system trace [9]
to record the CPU usage. In terms of total CPU time cost,
Fleet performs worse than Android by an average of 0.18%,
but it performs better than Marvin by an average of 3.21%.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Huang, Zhang, Qiu, Liang, Ausavarungnirun, Li, and Xue

0
5

10
15
20
25

Ja
nk

 ra
tio

 (%
)

Android Marvin Fleet

Twitt
er

Face
book
Insta

gramTeleg
ramYoutu

beTikTo
k
Spot

ifyTwitc
h

Amazon

Goog
leMa

ps
Chro

me
Firefo

x
Angr

yBird
s

Cand
yCru

sh
0

10
20
30
40
50
60

FP
S

Figure 14. Frame rendering performance analysis with jank
ratio and frame per second (FPS).

Most of the CPU overhead is attributed to the GC threads,
where Fleet incurs an additional 0.16% CPU time compared
to Android on average.
Memory overhead. Fleet introduces an additional card table
fixed at 4 MB, which is proportional to the 4 GB heap size.
The memory occupancy of the card table can be reduced by
reclaiming its empty pages. On the other hand, Fleet can
efficiently offload cold objects that are larger than the card
table. As a result, Fleet can decrease the overall memory
usage with minimal memory overhead.
Power consumption. We use the Monsoon Power Mon-
itor [11] to measure the power consumption of Fleet and
Android for our tested apps. Each app is used for one minute
in the foreground and one minute in the background, and
we measure the average energy consumption during usage.
The average power consumption of Fleet is 1851 ± 143 mW.
For Android, it is 1817 ± 197 mW. Within the standard error,
the power consumption of Fleet and Android is similar.

7.4 Sensitivity study on the background heap size
ART utilizes a dynamic heap size scheme that adjusts the
heap limit based on the currently allocated memory size after
GC. In this section, we analyze the impact of the heap size
by setting the updated heap size to 1.1× and 2× the allocated
memory size after GCwhen the app is in the background. We
evaluate the caching capacity and hot launch performance
for these two heap size schemes in Fleet and Android.

Regarding caching capacity, a relatively smaller heap size
leads to higher app caching improvement in Fleet. When
the heap size scheme is configured to 1.1×, Fleet’s caching
capacity improves by approximately 20%. However, when the
scheme is configured to 2×, Fleet’s caching capacity becomes
similar to that of Android. This is because a larger heap size
limit allows for more garbage background objects, resulting
in inefficient BGC in Fleet.

As for the hot launch time, Fleet demonstrates consistent
performance across these two heap size schemes. In contrast,
Android exhibits significant variation in hot launch times
across these two heap size schemes. For instance, compared
to the heap size configured to 2×, the 1.1× configuration is

about 31% faster in Android. Therefore, Fleet’s hot launch
performance is more robust than that of Android when con-
sidering different heap size configurations. This is because
Fleet accurately identifies and swaps objects in the runtime
layer, considering the next hot launch, whereas the original
Android uses a generic swap approach.

8 Related Work
GC in the runtime. Fleet addresses four challenges in the
design of its GC method: (i) Avoid paging during GC. There
are primarily two approaches to coordinating GC and swap.
First, one method involves recording the outcome references
of swapped objects [21, 27, 32, 43]. These methods require
recording the reference information before swapping ob-
jects. During the tracing procedure, these methods utilize
the recorded reference information to traverse the object
reference graph without accessing the objects. Second, an-
other approach is to control the range of GC [30, 46, 47].
Fleet is a method that controls the range of GC. To the best
of authors’ knowledge, Fleet is the first method that controls
the range of GC by employing a scheme that differs between
foreground and background states; (ii) Identify hotness for
objects [21, 28, 43, 50]. The key distinction between Fleet and
these methods lies in the consideration of the distinct hot-
ness patterns observed in Android, such as foreground and
background usage; (iii) Reorganize objects through copy-
based GC [28, 50]. These works aim to consolidate small
objects with similar access patterns. Fleet groups the ob-
jects that need to be accessed during the hot-launch; (iv)
Application-aware GC. This term refers to various efforts
that aim to co-design the GC scheme with specific applica-
tions. Examples of such works include those focused on big
data systems [37, 38], disaggregated memory [24, 36, 46, 47],
and non-volatile memory [40, 49]. The objective of these
methods is to design an improved GC tailored to the specific
workload and requirements of each application. Fleet shares
a similar objective but focuses specifically on mobile apps.
Swap in mobile devices. Swap mechanisms are widely
used in mobile devices. SEAL [33] introduces a two-level
swap mechanism for mobile devices. Kwon et al. [31] pro-
pose a compressed swap scheme for mobile GPU memory to
increase the caching capacity of apps. ASAP [41] improves
hot-launch performance by employing a prefetching method.
However, these methods consider GC threads as regular pro-
gram execution and fail to address the adverse effects of GC,
which is a crucial issue in Android devices. Since GC moves
objects to different pages, estimating access patterns at a
page level will be interference.
Cross layermemorymanagement. Several works propose
a cross-layer design for memory management [25, 32, 34, 48].
Marvin [32] is the first to co-design GC and swapping for
mobile systems. Marvin utilizes a stub-based method to
record references to swapped-out objects, which improves

More Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-aware GC-Swap Co-design ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the caching capacity for apps with large objects. However,
it causes significant degradation in hot-launch performance
due to two problems. First, it cannot efficiently process small
objects, which constitute the majority of objects in Android
apps. Second, it requires long stop-the-world pauses to main-
tain the reference information. Acclaim [34] proposes a cross-
layer solution by passing the app state to the kernel and
adjusting memory management.

9 Conclusion
The app launch time is critical to the user experience on
mobile devices. However, existing approaches fall short in
optimizing the hot-launch performance while maximizing
the number of cached apps. Based on the observation of
foreground/background object characteristics, this paper
presents Fleet, a fore/background-aware GC-swap co-design
framework that guides the swap with the foreground object
access pattern and restricts the GC tracing range to the back-
ground objects. The evaluation reveals that, on average, Fleet
achieves a 1.59× faster hot-launch time and caches 1.21×
more apps than Android.

Acknowledgments
We are grateful to our shepherd and the anonymous review-
ers for their constructive comments and suggestions. The
work was supported in part by the Research Grants Council
of the Hong Kong Special Administrative Region, China (No.
CityU 11209122), the Thailand MHESI Research Grant for
New Scholars (RGNS 64-091), the National Key Research
and Development Program of China (No. 2022YFB3104502),
the State Key Laboratory of Computer Architecture (ICT,
CAS) under Grant CARCH A20211, the Wuhan Science and
Technology Joint Project for Building a Strong Transporta-
tion Country (No. 2023-2-7), the CCF-Phytium Fund, and the
National Science Foundation (NSF) Grant (No. 2105006).

A Hot Launch Performance Appendix
In this appendix, we present 3 additional characteristics of
the hot launch time (Figure 15) and hot launch distributions
for the remaining 6 commercial apps (Figure 16).

Figure 15 supplements 3 statistical characteristics: (a) the
tail hot-launch time at the 90th percentile, (b) the minimum
hot-launch time at the 10th percentile, and (c) the mean hot-
launch time and its corresponding standard deviation. We
calculate the performance speedup relative to Android. The
results indicate that Fleet improves the hot-launch perfor-
mance for all 3 statistical measures. Specifically, Fleet opti-
mizes the tail hot launch time more effectively. Fleet shows
an average improvement of more than 2.5× in optimizing
the 90th percentile tail hot-launch time.

Figure 16 shows that Fleet provides faster hot launch times
formost apps, except for Candy Crush Saga. This discrepancy
is because Candy Crush Saga has a small percentage of Java

Twitter
Facebook

Instagram Line
Youtube

SpotifyTwitch

AmazonShop
GoogleMaps

Chrome
Firefox
AngryBirds

Average0
1
2
3
4
5

Sp
ee

du
p

of
 th

e
90

th
 p

er
ce

nt
ile Marvin Fleet

(a) The 90th percentile hot-launch time

Twitter
Facebook

Instagram Line
Youtube

SpotifyTwitch

AmazonShop
GoogleMaps

Chrome
Firefox
AngryBirds

Average0

1

2

Sp
ee

du
p

of
 th

e
10

th
 p

er
ce

nt
ile Marvin Fleet

(b) The 10th percentile hot-launch time

Twitter
Facebook

Instagram Line
Youtube

SpotifyTwitch

AmazonShop
GoogleMaps

Chrome
Firefox
AngryBirds

Average0
1
2
3

Sp
ee

du
p

of
 a

ve
ra

ge
ho

t l
au

nc
h

tim
e

Marvin Fleet

(c) Average hot-launch time with standard deviation

Figure 15. The hot-launch speedup over Android under high
memory pressure.

200 400
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(a) Telegram

500 1000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(b) TikTok

0 5000 10000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(c) Rave

0 5000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(d) BigoLive

0 1000 2000
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(e) LinkedIn

500 750
Hot-launch time (ms)

0

50

100

CD
F
(%

)

Android
Marvin
Fleet

(f) Candy crush soga

Figure 16. The hot-launch performance distribution of the
6 other commercial apps under high memory pressure.

heap (only 4%). Fleet is primarily optimized for memory in
the Java heap, making it more suitable for apps with a larger
percentage of Java heap.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Huang, Zhang, Qiu, Liang, Ausavarungnirun, Li, and Xue

B Artifact Appendix
B.1 Abstract
Fleet is a co-design of Android Runtime (ART) and Linux
kernel, enabling more efficient memory management for
mobile devices. The artifact provides the source code of our
modified ART and Linux kernel. Additionally, this artifact
includes testing scripts and Jupyter notebooks for collecting
data and reproducing the key experimental results reported
in the paper. These results encompass app caching capacity,
hot launch performance, and runtime performance.

For the evaluation, it is necessary to have a Pixel 3 mobile
device and a development workstation running 64-bit Linux
distribution with more than 64 GB DRAM and 800 GB free
disk space. The mobile device should be connected to the
workstation using a USB data cable.

B.2 Artifact check-list (meta-information)
• Program: Modified ART and Linux kernel, Python and Bash scripts,
Jupyter Notebooks.

• Compilation: Java Development Kit 8, Python 3, GNU C Library.
• Run-time environment: Android 10 for the device and Ubuntu
22.04 for the development workstation.

• Hardware: Pixel 3 mobile phone.
• Metrics: App caching capacity, GC working set size, hot launch
performance, CPU usage, and frame rendering performance.

• Output: The console and system trace tool output raw data, and
Jupyter Notebook is used to analyze and generate visualized results.

• Experiments: Python and Bash scripts are used for collecting data,
and Jupyter Notebooks are used for analysis.

• How much disk space required (approximately)?: About 800
GB, mainly for building Fleet and other compared Android systems.

• How much time is needed to prepare workflow (approxi-
mately)?: About 12 hours.

• How much time is needed to complete experiments (approxi-
mately)?: About 12 hours.

• Publicly available?: Yes.
• Archived(provide DOI)?:https://doi.org/10.5281/zenodo.10878114

B.3 Description
B.3.1 How to access. In addition to the archived version,
we maintain a public GitHub repository: https://github.com/
jiachengh/Fleet

B.3.2 Hardware dependencies. To reproduce the results
reported in the paper, we require a Google Pixel 3 mobile
device. Additionally, a development workstation is necessary
for building Android images and interacting with the device.
It is recommended that the development workstation have
64 GB of DRAM and 800 GB of storage space, primarily for
building Android systems. The workstation should be an
AMD64 architecture machine.

B.3.3 Software dependencies. We recommend that the
developmentworkstation run onUbuntu 22.04, but other sim-
ilar 64-bit Linux distributions should also work. The develop-
ment environment should include GNU C Library (glibc) 2.17
or later. To interact with the device, the workstation should

also have some development tools, including Android Debug
Bridge (ADB) and fastboot. Additionally, the Pixel 3 mobile
device should be configured with its bootloader unlocked.

B.3.4 Data sets. The artifact provides installation pack-
ages for all the tested commercial apps listed in Table 3.
These apps can be found in the evaluation/APK folder.
Additionally, there are installation scripts available in the
evaluation/install-apk folder to assist users in installing
these apps on their mobile devices.

B.4 Installation
Our artifact includes a README.md file that provides a more
detailed procedure for building and installing Fleet and the
other baselines. The installation process for building Android
systems is divided into three main steps.
First, we need to obtain the source code of Android by

downloading the basic source code and making our modifi-
cations. The artifact provides our modified code in the src
folder. To incorporate these files into the original AOSP and
kernel, we can run the apply-modification.sh script.
Second, after updating the source code, we need to build

Android system images from it. This involves building the
kernel and the AOSP. We can utilize the scripts named
build_*.sh provided in the artifact.
Third, once we have built Android images, users can use

the scripts provided in the artifact to flash the compiled im-
ages to the Pixel 3 device using the fastboot*.sh scripts.
Additionally, we can use corresponding scripts provided by
the artifact to set up the configuration for our system, includ-
ing configuring the swap partition and installing the Google
services framework and apps.
Moreover, the artifact also provides pre-built system im-

ages. Users can directly flash the corresponding pre-built
images to the device using the fastboot*.sh scripts.

B.5 Experiment workflow
The artifact includes all experiment-related files in the
evaluation folder. Additionally, there is a EXPERIMENTS.md
document that provides a more detailed description of the
evaluation. To reproduce the key results reported in the pa-
per, this section will include the following three experiments.

B.5.1 App caching andGCworking set. All the relevant
files are located in the evaluation/exp-cache-app folder.
Figure 11c. To begin, run the following command from the
evaluation folder:
python ./exp-cache-app/run-cache-commercial.py

This Python script will continuously start the apps and
count the number of active apps. The number of ac-
tive apps can be observed in the console after the key-
word CachingNUM=. When the script finishes, it will
print the summary of the cached app numbers in the
last line, which begins with cached_numbers=. Finally,

https://doi.org/10.5281/zenodo.10878114
https://github.com/jiachengh/Fleet
https://github.com/jiachengh/Fleet

More Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-aware GC-Swap Co-design ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

users need to paste these summary results into the
exp-run-caching-commercial.ipynb notebook to gener-
ate the result figure.
Figure 12. This result requires additional profile information,
which can be obtained by enabling the debug flag before
compiling Fleet. Therefore, users need to rebuild Fleet to
enable profile information. For each comparison of config-
uration, users should collect the working set alongside the
execution time using two terminals. One terminal is used to
save the logs printed by adb logcat. The other is used to
execute the app-running scripts run-gc-working-set.py.
To produce Figure 12a, users should retrieve the back-

ground GC working set logs from the log files saved
in the first terminal and calculate the statistical re-
sults. Finally, users could input these results to the
exp-gc-working-set.ipynb notebook and plot the figure.

To produce Figure 12b, the artifact provides some analysis
code blocks in the exp-gc-working-set.ipynb notebook.
Users need to update the log paths of enabling BGC and
disabling BGC in the notebook. Then the notebook can au-
tomatically analyze the log files and plot the result figure.

B.5.2 Hot launch performance. Users could use the fol-
lowing command to continuously launch apps and obtain
the hot and cold launch times in the console:

python ./exp-hot-launch/run-launch.py

If there is not enough hot launch data for some apps, users
can adjust the app startup sequence and number of startups
in the script.
Once the script finishes, it will print a summary of the

hot launch times for every app. Users need to copy the sum-
mary hot launch time from the console and paste it into the
exp-hot-launch.ipynb Jupyter Notebook.
Figure 13a-m. After all the hot launch records in
exp-hot-launch.ipynb have been updated, we can
run the all code blocks in the notebook. The notebook will
generate the CDF graph of hot launch times for all apps and
the statistical graph.
Figure 13n. Users can use the check-heap.sh script to get
the Java heap size and the total memory footprint of apps.
Then, the ratio of the Java heap can be calculated by dividing
the Java heap size by the total memory of the app.
Finally, users could write the ratio of Java heap and the

hot launch speedup in the corresponding code block in
exp-hot-launch.ipynb, which will generate Figure 13n.

B.5.3 Runtime performance. To obtain the runtime in-
formation of apps, the experiments mainly consist of two
steps: (i) utilize the system trace tool to capture traces; (ii)
analyze these captured traces by the Perfetto Python library.
CPU usage. First, users should turn on the system trace

while simultaneously executing run-once-cpu.py. When
the Python script finishes, users should close the system

trace and fetch the captured trace from the mobile de-
vice to the development workstation. After obtaining the
trace file, users can update the TRACE_PATH variable in the
exp-runtime-performance.ipynb notebook. Finally, users
can execute blocks of the notebook, which analyze the trace
file using Perfetto and output the CPU usage result in the
last code block.
Figure 14. Similarly, users should start the system trace

while initiating the run-once-foreground.py script. Af-
ter the script finishes, users close the system trace and
fetch the trace file from the device. Then, users can use the
exp-runtime-performance.ipynb notebook to analyze the
trace by updating the TRACE_PATH to the trace file. After run-
ning all the blocks in the notebook, it will generate the jank
ratio and FPS results. Users could paste these results into the
exp-runtime-performance-plot.ipynb notebook which
incorporates the script to plot the resulting figure.

B.6 Evaluation and expected results
During these experiments, users can obtain raw data from
the console and traces captured by the system trace tool. Fur-
thermore, the artifact provides Jupyter notebooks to analyze
the raw data and generate figures.
Please note that due to differences in app usage, such as

daily content and individual accounts, we do not anticipate
identical results, but we expect the results to exhibit similar
trends as those reported in the paper.

References
[1] Milliseconds make millions: A study on how improvements

in mobile site speed positively affect a brand’s bottom line.
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/
Consulting/Milliseconds_Make_Millions_report.pdf.

[2] Response times: The 3 important limits. https://www.nngroup.com/
articles/response-times-3-important-limits/.

[3] Marvin code, 2019. https://github.com/UWSysLab/marvin-code/ [Ac-
cessed: 20-Nov-2023].

[4] Oppo introduces new memory expansion technology for
its reno5 series, a94 and a74 series smartphones, 2021.
https://www.oppo.com/sg/newsroom/press/oppo-introduces-
new-memory-expansion-technology/ [Accessed: 20-Nov-2023].

[5] How to use xiaomi virtual ram to speed up your device?,
2022. https://xiaomiui.net/how-to-use-xiaomi-virtual-ram-to-speed-
up-your-device-31416/ [Accessed: 20-Nov-2023].

[6] What is ram plus and how to use it?, 2022. https://www.samsung.com/
sg/support/mobile-devices/what-is-ram-plus-and-how-to-use-it/
[Accessed: 20-Nov-2023].

[7] Android debug bridge (adb) tool, 2023. https://developer.android.com/
studio/command-line/adb [Accessed: 20-Nov-2023].

[8] App startup time | app quality | android developers, 2023. https:
//developer.android.com/topic/performance/vitals/launch-time [Ac-
cessed: 20-Nov-2023].

[9] Capture a system trace on a device, 2023. https://developer.android.
com/topic/performance/tracing/on-device/ [Accessed: 20-Nov-2023].

[10] Debugging art garbage collection, 2023. https://source.android.com/
docs/core/runtime/gc-debug/ [Accessed: 20-Nov-2023].

https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
https://github.com/UWSysLab/marvin-code/
https://www.oppo.com/sg/newsroom/press/oppo-introduces-new-memory-expansion-technology/
https://www.oppo.com/sg/newsroom/press/oppo-introduces-new-memory-expansion-technology/
https://xiaomiui.net/how-to-use-xiaomi-virtual-ram-to-speed-up-your-device-31416/
https://xiaomiui.net/how-to-use-xiaomi-virtual-ram-to-speed-up-your-device-31416/
https://www.samsung.com/sg/support/mobile-devices/what-is-ram-plus-and-how-to-use-it/
https://www.samsung.com/sg/support/mobile-devices/what-is-ram-plus-and-how-to-use-it/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/vitals/launch-time
https://developer.android.com/topic/performance/tracing/on-device/
https://developer.android.com/topic/performance/tracing/on-device/
https://source.android.com/docs/core/runtime/gc-debug/
https://source.android.com/docs/core/runtime/gc-debug/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Huang, Zhang, Qiu, Liang, Ausavarungnirun, Li, and Xue

[11] High voltage power monitor | monsoon solutions | bellevue, 2023.
https://www.msoon.com/high-voltage-power-monitor/ [Accessed: 20-
Nov-2023].

[12] Memory allocation among processes, 2023. https://developer.android.
com/topic/performance/memory-management/ [Accessed: 20-Nov-
2023].

[13] Memory swapping: What it is and how it works, 2023.
https://forum.huawei.com/enterprise/en/memory-swapping-
what-it-is-and-how-it-works/thread/696666286131658752-
667213860488228864/ [Accessed: 20-Nov-2023].

[14] Perfetto - system profiling, app tracing and trace analysis, 2023. https:
//perfetto.dev/ [Accessed: 20-Nov-2023].

[15] Ui jank detection, 2023. https://developer.android.com/studio/profile/
jank-detection/ [Accessed: 20-Nov-2023].

[16] ssvb/tinymembench: Simple benchmark for memory throughput and
latency, 2024. https://github.com/ssvb/tinymembench [Accessed: 10-
Mar-2024].

[17] Welcome to fio’s documentation!, 2024. https://fio.readthedocs.io/en/
latest/index.html [Accessed: 10-Mar-2024].

[18] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven
Eeckhout. Write-rationing garbage collection for hybrid memories.
In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018,
pages 62–77. ACM, 2018.

[19] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Recon-
sidering custom memory allocation. In Mamdouh Ibrahim and Satoshi
Matsuoka, editors, Proceedings of the 2002 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications,
OOPSLA 2002, Seattle, Washington, USA, November 4-8, 2002, pages
1–12. ACM, 2002.

[20] Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-region
garbage collector with space efficiency, fast collection, and mutator
performance. In Rajiv Gupta and Saman P. Amarasinghe, editors,
Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008,
pages 22–32. ACM, 2008.

[21] Michael D. Bond and Kathryn S. McKinley. Tolerating memory leaks.
In Gail E. Harris, editor, Proceedings of the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA,
pages 109–126. ACM, 2008.

[22] Stuart K Card, George G Robertson, and Jock D Mackinlay. The
information visualizer, an information workspace. In Proceedings of
the SIGCHI Conference on Human factors in computing systems, pages
181–186, 1991.

[23] Tao Deng, Shaheen Kanthawala, Jingbo Meng, Wei Peng, Anastasia
Kononova, Qi Hao, Qinhao Zhang, and Prabu David. Measuring smart-
phone usage and task switching with log tracking and self-reports.
Mobile Media & Communication, 7(1):3–23, 2019.

[24] Paulo Ferreira and Marc Shapiro. Garbage collection and DSM con-
sistency. In Proceedings of the First USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Monterey, California, USA,
November 14-17, 1994, pages 229–241. USENIX Association, 1994.

[25] Weichao Guo, Kang Chen, Huan Feng, Yongwei Wu, Rui Zhang, and
Weimin Zheng. MARS: Mobile application relaunching speed-up
through flash-aware page swapping. IEEE Trans. Computers, 65(3):916–
928, 2016.

[26] Sangwook Shane Hahn, Sungjin Lee, Inhyuk Yee, Donguk Ryu, and
Jihong Kim. {FastTrack}: Foreground {App-Aware}{I/O} manage-
ment for improving user experience of android smartphones. In 2018
USENIX Annual Technical Conference (USENIX ATC 18), pages 15–28,
2018.

[27] Matthew Hertz, Yi Feng, and Emery D Berger. Garbage collection
without paging. In Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation, pages 143–153,
2005.

[28] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley,
J. Eliot B. Moss, Zhenlin Wang, and Perry Cheng. The garbage col-
lection advantage: improving program locality. In John M. Vlissides
and Douglas C. Schmidt, editors, Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver,
BC, Canada, pages 69–80. ACM, 2004.

[29] Sang-Hoon Kim, Jinkyu Jeong, and Jin-Soo Kim. Application-aware
swapping for mobile systems. ACM Transactions on Embedded Com-
puting Systems (TECS), 16(5s):1–19, 2017.

[30] Iacovos GKolokasis, Giannos Evdorou, Shoaib Akram, Christos Kozani-
tis, Anastasios Papagiannis, Foivos S Zakkak, Polyvios Pratikakis, and
Angelos Bilas. Teraheap: Reducing memory pressure in managed
big data frameworks. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pages 694–709, 2023.

[31] Sejun Kwon, Sang-Hoon Kim, Jin-Soo Kim, and Jinkyu Jeong. Man-
aging gpu buffers for caching more apps in mobile systems. In 2015
International Conference on Embedded Software (EMSOFT), pages 207–
216. IEEE, 2015.

[32] Niel Lebeck, Arvind Krishnamurthy, Henry M Levy, and Irene Zhang.
End the senseless killing: Improving memory management for mobile
operating systems. In 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20), pages 873–887, 2020.

[33] Changlong Li, Liang Shi, Yu Liang, and Chun Jason Xue. SEAL: user
experience-aware two-level swap for mobile devices. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., 39(11):4102–4114, 2020.

[34] Yu Liang, Jinheng Li, Rachata Ausavarungnirun, Riwei Pan, Liang Shi,
Tei-Wei Kuo, and Chun Jason Xue. Acclaim: Adaptive memory reclaim
to improve user experience in android systems. In 2020 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 20), pages 897–910,
2020.

[35] Xinze Liu, Yubo Zhang, Ziqian Yan, and Yan Ge. Defining ‘seamlessly
connected’: user perceptions of operation latency in cross-device inter-
action. International Journal of Human-Computer Studies, 177:103068,
2023.

[36] Martin Maas, Krste Asanovic, Tim Harris, and John Kubiatowicz. Tau-
rus: A holistic language runtime system for coordinating distributed
managed-language applications. In Tom Conte and Yuanyuan Zhou,
editors, Proceedings of the Twenty-First International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016, pages 457–471. ACM,
2016.

[37] KhanhNguyen, Lu Fang, Guoqing Xu, BrianDemsky, Shan Lu, Sanazsa-
dat Alamian, and Onur Mutlu. Yak: A high-performance big-data-
friendly garbage collector. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 349–365, 2016.

[38] KhanhNguyen, KaiWang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing
Xu. FACADE: A compiler and runtime for (almost) object-bounded
big data applications. In Özcan Özturk, Kemal Ebcioglu, and Sand-
hya Dwarkadas, editors, Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2015, Istanbul, Turkey, March 14-18, 2015,
pages 675–690. ACM, 2015.

[39] Vijay Janapa Reddi, Hongil Yoon, and Allan Knies. 2 billion devices
and counting: An industry perspective on the state of mobile computer
architecture. IEEE Micro, 38:6–21, 2018.

[40] Thomas Shull, Jian Huang, and Josep Torrellas. Autopersist: an easy-
to-use java NVM framework based on reachability. In Kathryn S.
McKinley and Kathleen Fisher, editors, Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 316–332.

https://www.msoon.com/high-voltage-power-monitor/
https://developer.android.com/topic/performance/memory-management/
https://developer.android.com/topic/performance/memory-management/
https://forum.huawei.com/enterprise/en/memory-swapping-what-it-is-and-how-it-works/thread/696666286131658752-667213860488228864/
https://forum.huawei.com/enterprise/en/memory-swapping-what-it-is-and-how-it-works/thread/696666286131658752-667213860488228864/
https://forum.huawei.com/enterprise/en/memory-swapping-what-it-is-and-how-it-works/thread/696666286131658752-667213860488228864/
https://perfetto.dev/
https://perfetto.dev/
https://developer.android.com/studio/profile/jank-detection/
https://developer.android.com/studio/profile/jank-detection/
https://github.com/ssvb/tinymembench
https://fio.readthedocs.io/en/latest/index.html
https://fio.readthedocs.io/en/latest/index.html

More Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-aware GC-Swap Co-design ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

ACM, 2019.
[41] Sam Son, Seung Yul Lee, Yunho Jin, Jonghyun Bae, Jinkyu Jeong,

Tae Jun Ham, Jae W Lee, and Hongil Yoon. {ASAP}: Fast mobile
application switch via adaptive prepaging. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 365–380, 2021.

[42] Darko Stefanovic, Kathryn S. McKinley, and J. Eliot B. Moss. Age-
based garbage collection. In Brent Hailpern, Linda M. Northrop, and
A. Michael Berman, editors, Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages &
Applications, OOPSLA 1999, Denver, Colorado, USA, November 1-5, 1999,
pages 370–381. ACM, 1999.

[43] Yan Tang, Qi Gao, and Feng Qin. Leaksurvivor: Towards safely tolerat-
ing memory leaks for garbage-collected languages. In Rebecca Isaacs
and Yuanyuan Zhou, editors, 2008 USENIX Annual Technical Confer-
ence, Boston, MA, USA, June 22-27, 2008. Proceedings, pages 307–320.
USENIX Association, 2008.

[44] Niraj Tolia, David G Andersen, and Mahadev Satyanarayanan. Quanti-
fying interactive user experience on thin clients. Computer, 39(3):46–52,
2006.

[45] Po-Hsien Tseng, Pi-Cheng Hsiu, Chin-Chiang Pan, and Tei-Wei Kuo.
User-centric energy-efficient scheduling on multi-core mobile devices.
In The 51st Annual Design Automation Conference 2014, DAC ’14, San
Francisco, CA, USA, June 1-5, 2014, pages 85:1–85:6. ACM, 2014.

[46] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Semeru: A memory-disaggregated managed runtime.
In 14th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 20), pages 261–280, 2020.

[47] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson,
Christian Navasca, Shan Lu, and Guoqing Harry Xu. Memliner: Lining
up tracing and application for a far-memory-friendly runtime. In
Marcos K. Aguilera and Hakim Weatherspoon, editors, 16th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2022, Carlsbad, CA, USA, July 11-13, 2022, pages 35–53. USENIX Asso-
ciation, 2022.

[48] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,
Chunqiang Tang, and Dimitrios Skarlatos. TMO: transparent memory
offloading in datacenters. In Babak Falsafi, Michael Ferdman, Shan Lu,
and Thomas F. Wenisch, editors, ASPLOS ’22: 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4 March
2022, pages 609–621. ACM, 2022.

[49] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting Li, Haibo Chen, Binyu
Zang, and Haibing Guan. Espresso: Brewing java for more non-
volatility with non-volatile memory. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 70–83, 2018.

[50] Albert Mingkun Yang, Erik Österlund, and TobiasWrigstad. Improving
program locality in the GC using hotness. In Alastair F. Donaldson
and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implemen-
tation, PLDI 2020, London, UK, June 15-20, 2020, pages 301–313. ACM,
2020.

[51] Ting Yang, Emery D Berger, Scott F Kaplan, and J Eliot B Moss. Cramm:
Virtual memory support for garbage-collected applications. In Pro-
ceedings of the 7th symposium on Operating systems design and imple-
mentation, pages 103–116, 2006.

[52] Wenyu Zhao, Stephen M. Blackburn, and Kathryn S. McKinley. Low-
latency, high-throughput garbage collection. In Ranjit Jhala and Isil
Dillig, editors, PLDI ’22: 43rd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, San Diego, CA,
USA, June 13 - 17, 2022, pages 76–91. ACM, 2022.

[53] Kan Zhong, Duo Liu, Liang Liang, Xiao Zhu, Linbo Long, Yi Wang,
and Edwin Hsing-Mean Sha. Energy-efficient in-memory paging
for smartphones. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 35(10):1577–1590, 2015.

[54] Xiao Zhu, Duo Liu, Kan Zhong, Jinting Ren, and Tao Li. Smartswap:
High-performance and user experience friendly swapping in mobile
systems. In Proceedings of the 54th Annual Design Automation Con-
ference, DAC 2017, Austin, TX, USA, June 18-22, 2017, pages 22:1–22:6.
ACM, 2017.

	Abstract
	1 Introduction
	2 Background
	2.1 Hot-launch is crucial for mobile user experience
	2.2 Two-layer memory management

	3 Motivation
	3.1 The performance of hot-launch deteriorates when more cached apps are enabled
	3.2 Analysis of the Linux swap in Android

	4 Observations
	4.1 Fore/background object characteristics
	4.2 Fore/background object access pattern
	4.3 The size mismatch between GC and swap

	5 Fleet Design
	5.1 Overview
	5.2 Background-object GC
	5.3 Runtime-guided swap

	6 Evaluation Methodology
	7 Evaluation Results
	7.1 App caching capacity
	7.2 Hot-launch performance
	7.3 Runtime performance
	7.4 Sensitivity study on the background heap size

	8 Related Work
	9 Conclusion
	Acknowledgments
	A Hot Launch Performance Appendix
	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact check-list (meta-information)
	B.3 Description
	B.4 Installation
	B.5 Experiment workflow
	B.6 Evaluation and expected results

	References

