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Abstract

Recent Android systems have employed pre-compilation
technology to boost app launch speed and runtime perfor-
mance. However, this generates large OAT files that over-
consume scarce memory and storage resources in mobile de-
vices. This paper conducts an evaluation of code redundancy
in popular production android applications and observes
that the code redundancy is up to 25%. To reduce the code
size via redundancy elimination, this paper proposes Calibro,
a compilation-assisted linking-time binary code outlining
method. Calibro consists of two parts, the Compilation-Time
code Outlining (CTO) and the Linking-Time Binary code
Outlining (LTBO) with information collected at compilation-
time. Additionally, a paralleled suffix tree method is proposed
to reduce the building time overhead, and a hot function fil-
tering method is proposed to effectively mitigate run-time
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performance degradation caused by code outlining. Experi-
mental results show that compared to the baseline (the orig-
inal AOSP version with all available code size optimization
enabled), the proposed approach reduces code size in An-
droid applications by more than 15.19% on average, with
negligible runtime performance degradation and tolerable
building time overhead. Hence the proposed code outlining
approach is promising for production deployment.

CCS Concepts: » Software and its engineering — Com-
pilers.
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1 Introduction

As the importance of mobile applications in daily life contin-
ues to grow, modern businesses are increasingly reliant on
mobile apps for their business models [6]. This rapid growth
in business demand has heightened the requirements for
mobile app functionality, leading to continuous expansion
and enhancement of features, which in turn causes code
size inflation. Larger applications require more resources for
downloading, installation, storage, and execution. Moreover,
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many app download platforms impose size restrictions. For
instance, from August 2021, new apps are required to pub-
lish with the Android App Bundle on Google Play [22] and
Google Play enforces a compressed download size restric-
tion of 200 MB for apps published with app bundles [23].
Research [6] indicates that when app size approaches or ex-
ceeds these limits, user satisfaction decreases, resulting in
significant drops in App registrations, installations, and ini-
tial bookings, thus causing losses for mobile app developers.
Therefore, reducing the code size of mobile applications has
become a critical objective for both mobile app developers
and device manufacturers.

Android is a widely used mobile platform. As of Septem-
ber 2024, Android holds 71.85% of the global mobile market
share [32]. In the Android system, most applications are
written in JAVA or Kotlin and run on the Android virtual
machine. The method of interpreted execution significantly
slows down both the startup speed and the runtime effi-
ciency of programs. Consequently, starting with Android 7.0
(Nougat), Ahead-Of-Time (AOT) compilation is supported
to compile applications into binary code that runs directly
on the device and stored in the form of OAT files on An-
droid devices. These OAT files often constitute a significant
portion of the application size. Additionally, compared to
traditional compilers like GCC and LLVM, the code-size-
oriented optimizations of Android’s compilers are relatively
weak, resulting in binary code with a considerable amount
of unnecessary or redundant code. According to this paper’s
analysis, the code redundancy in OAT files is estimated to be
more than 25%, as illustrated in Table 1. Therefore, OAT files
are critical to code size reduction for Android applications.

Existing work proposed code outlining-based methods
to reduce the code size either for general applications by
implementing the methods in the LLVM compiler infrastruc-
ture [21] [25], or specifically for iOS applications [6] [19].
However, it cannot be directly applied to Android applica-
tions due to the following challenges.

e There is a lack of relevant work on Android systems.
In Android systems, OAT files are special ELF files,
containing a part of Android-specific content. Simply
applying code outlining can lead to a waste of opti-
mization opportunities, and even severe correctness
issues due to these differences;

e Unlike iOS’s build pipeline, Android’s build pipeline
doesn’t support a machine-level intermediate repre-
sentation (IR). As a result, the whole program out-
lining could only be conducted at link-time on the
binary code, rather than the assembly code as in pre-
vious work [6]. Outlining on the binary code is much
more challenging than outlining on the assembly code
since it involves the work of disassembling and binary
rewriting;
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e Code outlining causes performance degradation. Code
outlining always introduces additional execution of
call and return instructions, which is unfriendly to
both the CPU pipeline and code cache, thus leading to
inevitable performance degradation. Meanwhile, this
optimization also causes building overhead.

To overcome these challenges, this paper proposes Cali-
bro. We analyzed the features of binary code redundancy in
OAT files and conducted a compilation-time code outlining
based on the result. Furthermore, in the compilation time, we
collected essential information like PC-relative addressing
instructions’ offsets and targets that will assist the Link-Time
Binary code outlining just followed. In addition, we proposed
a paralleled suffix tree method which significantly reduces
the building time overhead. To mitigate the performance
degradation caused by code outlining, we proposed a hot
function filtering method and and successfully reduced the
overhead to less than 1%.

Experimental results show that Calibro can reduce code
size in Android applications by more than 15%, with negligi-
ble runtime performance degradation and tolerable building
overhead, which enables the code outlining approach to be
promising for the production environment.

The main contributions of this work include:

e This work analyzes the code redundancy in Android
applications. Based on the evaluation, we find several
observations, which motivate this work to reduce the
code size in Android applications;

e This work proposes a compilation-time code outlining
method to optimize the top repetitive code patterns
specific to the Android Runtime (ART). This method
can reduce the ART-specific code redundancy in a
much more lightweight way than a general code out-
lining work;

e This work proposes a link-time binary code outlining
method with the information collected at compilation-
time. With this useful information, the binary code
outlining work is exempt from bothering the headache-
inducing work of disassembling and binary rewriting;

e This work proposes a hot function filtering method
to mitigate the runtime performance degradation due
to code outlining. In addition, this work proposes a
paralleled suffix tree method to speed up the binary
code outlining work;

e This work conducts a comprehensive experimental
evaluation of the proposed method, and the results
show that the proposed approach can significantly
reduce the code size of Android applications while
introducing negligible performance degradation and
tolerable building overhead. It demonstrates that the
proposed code outlining method is promising for the
production environment.
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2 Background and Motivations
2.1 Background

2.1.1 Code Outlining. Code outlining is widely used for
code size reduction. The basic workflow of code outlining
is, identifying repetitive code sequences within the code,
outlining this sequence into functions, and subsequently
replacing all instances of this sequence with calls to the
newly created outlined function. This method can generally
be divided into two main steps: Code redundancy detection
and elimination.

Code Redundancy Detection: Code outlining methods
commonly utilize suffix tree-based redundancy detection
schemes to identify all redundant code segments within the
code [6, 18, 21, 25]. Initially, the whole code sequence of an
application is transformed into an unsigned integer sequence
through instruction mapping or instruction hashing[19]. A
suffix tree, is subsequently built using the sequence, and
the non-leaf nodes of the suffix tree are traversed to find all
recurring code sequences. The suffix tree will be discussed
in detail later.

Code Redundancy Elimination: Once duplicate instruc-
tion sequences are identified, these sequences are outlined
into functions, and all identical sequences are replaced with
calls to these outlined functions.

In recent years, outline methods have garnered extensive
attention from both the industry and academia, finding sig-
nificant applications in the mobile domain. LLVM, a famous
open source complier framework, has implemented code out-
lining in both IR level[21] and machine IR level [25]. Building
on this, Uber’s research [6] modified the compilation pipeline
to merge multiple IR files, expanding the optimization scope
from a single module to the whole program. This approach,
through multiple rounds of outlining, significantly reduce
the code size. Uber’s study was the first to apply code out-
lining to commercial iOS applications, demonstrating its
effectiveness in the mobile domain. Subsequently, Meta’s
research [18] employed code instrumentation and dual code
generation to mitigate the overhead in compilation time and
performance degradation caused by code outlining. More
recently, ByteDance’s research [19] further reduced the code
size of native iOS applications by analyzing and rewriting
binaries during the linking process, leveraging outlining to
handle redundant parts. However, most of these work fo-
cus on reducing code size of iOS applications, cannot be
directly applied to the Android system due to the significant
challenges as stated in Section 1.

2.1.2 Suffix Tree. A suffix tree is a data structure designed
for efficiently storing and retrieving all suffixes of a string
set, and it is a special type of trie. In simple terms, a suffix
tree built from a sequence is a compressed trie built from all
the suffixes of that sequence.

Figure 1 shows an example suffix tree from the string
"banana". This string has a set of seven suffix substrings:
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"o non

"banana$", "anana$", "nana$", "ana$", "na$", "a$", "$" , where
"$" is used to indicate the ending mark. As shown in this
figure, each leaf-node represents a suffix substring which
consists of the ordered characters on the path from the root
node to this leaf-node. For example, the leaf-node with the
label "1" represents the suffix substring "anana$".

$ a
$
® O

Figure 1. An example of suffix tree.

The suffix tree can be used to find repetitive substrings.
Specifically, for each non-leaf node, if the number of transi-
tively descendant leaf nodes, N, is greater than or equal to 2,
the corresponding sequence is identified as repetitive, indi-
cating that it appears N times among this application’s code.
Moreover, it’s simple to obtain the length of each repetitive
code sequence, which is the length of characters on the path
from the root node to this non-leaf node.

For example, in Figure 1, the rightmost non-leaf node has
two descendant leaf-nodes, i.e., the nodes with labels "4"
and "2". It indicates the substring "na", which consists of
characters on the path from the root node to this non-leaf
node, appears twice in two suffix substrings, i.e., "na$" and
"nana$", respectively.

Note that in the suffix tree there may be overlapping repet-
itive substrings. For example, in Figure 1, the second leftmost
non-leaf node indicates the substring "ana" appears twice
in suffix substrings "ana$" and "anana$" respectively. But
these two substrings overlap with each other. To find the
non-overlapping repetitive substrings, a small modification
should be applied to selectively skip such ones.

The code redundancy detection work often employs suffix
tree based methods, which primarily utilize the suffix tree
to identify non-overlapping repetitive sequences among the
code sequence representing the whole application, simply
by viewing the sequence as a string. After that, the non-
overlapping repetitive sequences can be outlined into a func-
tion to eliminate the code redundancy.
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2.2 Analysis of Code Redundancy in Android
Applications

We select several most popular mobile applications, mainly
covering short video and social media applications, in the
OPPO App Market to analyze the code redundancy in An-
droid applications. Based on the analysis, the potential code
size savings due to code outlining can be estimated. The
analysis process consists of four steps as below:

(1) Mapping Binary Code into a Sequence of Un-
signed Integers: Firstly, the application’s binary code is
disassembled and thus an instruction sequence (IS) is ob-
tained. Each instruction is then mapped to a unique unsigned
integer, generating a sequence of unsigned integers, V.

(2) Building a Suffix Tree Using the Sequence V: The
sequence of unsigned integers V is used as input to build a
corresponding suffix tree using the Ukkonen algorithm [36],
which has the time complexity O(n), where n is the length
of the input string. In the suffix tree, each leaf node can be
traced by the path from the root node to this node, which
corresponds to a suffix sequence of V.

(3) Detecting the Repetitive Sequences: Non-leaf nodes
in the suffix tree are traversed. For each non-leaf node, if the
number of transitively descendant leaf nodes, N, is greater
than or equal to 2, the corresponding sequence is identified
as repetitive, indicating that it appears N times among this
application’s code.

(4) Estimating the Code Size Savings by Code Outlin-
ing: The potential code size reduction ratio by code outlining
is estimated using the equations in Figure 2. Here, Length
means the number of instructions within a repetitive se-
quence, RepeatedTimes means the number of repetitions, and
1 indicates the extra ret instruction to support the code out-
lining. As stated before, it’s simple to obtain both Length and
RepeatedTimes for each repetitive code sequence in the built
suffix tree.

OriginalSize = Length X RepeatedTimes
OptimizedSize = RepeatedTimes + 1 + Length
ReductionRatio = (OriginalSize — OptimizedSize) /OriginalSize

Figure 2. The benefit model for code size reduction by code
outlining.

2.3 Observations and Motivations

Based on the analysis of code redundancy mentioned above,
some interesting observations are found.

2.3.1 Observation 1: The Binary Code in OAT Files
Contains Significant Redundancy. Table 1 illustrates the
estimated potential code size reduction for the selected pop-
ular applications. The average estimated code size reduction
ratio is 25.4%, indicating substantial potential benefits from
code outlining.
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Figure 3. Sequence Length vs. Number of Repeats.

2.3.2 Observation 2: Code Sequences with High Repe-
tition Frequencies Are Commonly Very Short. Asshown
in Figure 3, most repetitive code sequences are short, and the
shorter the length of the sequence, the higher the frequency
of repetition. Therefore, most of repeating sequences are
typically confined within a basic block. This hints that code
outlining within a basic block is highly promising, given that
outlining of code sequences across a basic block is rather
challenging.

2.3.3 Observation 3: Several Repetitive Code Patterns
Are Specific to the Android Runtime (ART). We analyze
the repetitive code sequences with the highest repetition
frequency in the Wechat App in detail, and find that these
repetitive sequences are highly specific to the ART features.
Among these sequences, we highlight three hottest repet-
itive code patterns: The Java function calling pattern, the
ART native function calling pattern, and the stack overflow
checking pattern.

Java Function Calling Pattern: Figure 4a shows the Java
function calling pattern. In ART, each Java function is repre-
sented as an internal structure instance called ArtMethod. To
invoke a Java function, the ART firstly loads the associated
ArtMethod into the x0 register, and secondly loads the entry
address of the callee function from the ArtMethod object with
a fixed offset value into the x30 register, and finally jumps
to the function code by blr x30. The latter two steps exhibit
the exactly same code sequences for multiple invocations of
the same function. One instance with the offset value of 20
appears 1006k times in the Wechat App, and is ranked the
most repetitive code sequence.

ART Native Function Calling Pattern: Figure 4b shows
the ART native function calling pattern. The ART itself pro-
vides some native runtime functions to handle the runtime
tasks like memory allocation, memory release, .etc. These
native functions are preload into a memory segment, while
the segment address is always stored in a thread register
(x19), and each individual native function is addressed by
this segment address plus a fixed offset. One instance of this
pattern (invoking pAllocObjectResolved) appears 217k times
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Table 1. Estimated code size reduction ratios in popular apps on OPPO App Market.

Toutiao Taobao

Fangqie

Meituan Kuaishou Wechat AVG

Estimated reduction ratios | 25.4% 26.3%

24.5%

24.3% 27.7% 24.3% 25.4%

in the Wechat App, and is ranked the third most repetitive
code sequence.

Stack Overflow Checking Pattern: Figure 4c shows the
stack overflow checking pattern. In ART, each non-leaf func-
tion should check the stack address to avoid stack overflow
before any further stack manipulation, and an exception will
be thrown if the checking fails. This stack overflow checking
mechanism uses a fixed code sequence as illustrated in Fig-
ure 4c. This sequence appears 173k times in the Wechat App,
and is ranked the second most repetitive code sequence.

These patterns are common across ART and are likely
present in all Android applications. They can be identified
during the compilation stage, and redundancy can be elim-
inated by modifying the instruction generation with code
outlining.

2.4 Motivations

In the Android systems, most compilation optimizations
are concentrated at the intermediate representation level,
HGraph, as illustrated in Figure 5. However, much code
redundancy cannot be identified on the high level of ab-
straction in HGraph. In addition, many optimizations are
conducted per function, only eliminating inner function re-
dundancy and unreachable code. As a result, lots of code
redundancy remains in the generated binary code, as con-
firmed by Observation 1.

Based on Observation 1 and 2, we are motivated to reduce
the OAT code size for Android applications by a whole pro-
gram code outlining method. Specifically, as Android’s build
pipeline doesn’t support a machine level IR, the whole pro-
gram code outlining could only be conducted at linking-time
on the binary code.

1dr x30, [x0, #offset]
blr x30

(a) The Java function calling pattern. Here #offset
indicates a constant offset value.

1dr x30, [x19, #offset]

blr x30

(b) The ART Native Function Calling Pattern. Here
#offset indicates a constant offset value.

sub x16, sp, #0x2000 (8192)
Idr wzr, [x16]

(c) The Stack Overflow Checking Pattern.

Figure 4. The repetitive code patterns specific to the ART.
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Based on Observation 3, there are three repetitive code pat-
terns which are common across ART and are likely present
in all Android applications. This code redundancy can be re-
duced by lightly modifying the code generation work, which
is much more lightweight than a general code outlining work
as discussed later.

3 Design

This paper proposes Calibro, a compilation-assisted linking-
time binary code outlining approach. Calibro consists of two
parts, the Compilation-Time code Outlining (CTO) method
and the Linking-Time Binary code Outlining (LTBO) method.
The LTBO method firstly collects information at compilation-
time, and then conducts the whole program binary code out-
lining at linking-time. The workflow of Calibro is illustrated
in Figure 5, where the filled rectangles highlight the work
proposed in this paper.

As illustrated in Figure 5, in Android systems, an ap-
plication package consisting of multiple dex files is trans-
lated into binary code in the form of an OAT file by a tool
called DEX20AT. Each dex consists of multiple methods.
In DEX20AT, each method is translated into the IR called
Hgraph, optimized on the IR, and then further translated
into binary code, independently from other methods. Finally,
all compiled methods in the form of binary code are linked
into the OAT file.

The proposed approach coordinates the compilation-time
work and the linking-time work. During the compilation-
time, it works after the IR optimizations, firstly conducting
the CTO method for the three ART specific repetitive code
patterns, and then collecting useful information, which is
the first part of the LTBO method. During the linking-time,
it conducts the whole program binary code outlining, which
is the second part of the LTBO method. Since the whole
program code outlining approach may introduce issues like
building overhead and runtime performance degradation,
we also propose two optimization methods to address these
issues.

3.1 CTO for ART Specific Repetitive Code Patterns

For the three repetitive code patterns specific to the ART
as discussed in Observation 3, we propose a lightweight
compilation-time code outlining method. We can outline
these repetitive code patterns by modifying the code genera-
tion work in DEX20AT.

In DEX20AT, the code generation work traverses each IR
instruction and generates corresponding binary code based
on instruction templates. To outline the three specific code
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opt passes

CTO & LTBO.1

—>[binary code}

[methodl.l]—»[ngaphl.l]—
=)

[methodl.2]—>[ngaPh1~2]— opt passes —— CTO & LTBO.1 —>[binary codej\
apk LTBO.2 — linking OAT
[methodZ.l]—»[ngaphZ.l]— opt passes —— CTO & LTBO.1 —»[binary code}/
|
[method2.2]—>[ngaph2.2]— opt passes —— CTO & LTBO.1 —>[binary code}

Figure 5. The workflow of the Calibro approach for Android applications.

patterns, we can simply modify their corresponding instruc-
tion templates in this way: (1) Generating the original code
sequence, if it has not been generated, and storing it in a
cache with a label L; otherwise, retrieve the label L of the
code sequence from the cache; (2) Generating a call instruc-
tion with label L as its target.

3.2 LTBO at Compilation-time

A basic version of link-time binary code outlining works as
follows.

e Disassembling the binary code into assembly code.

e Tracking PC-relative addressing instructions, like jump
instructions.

o Detecting repetitive code sequences among the whole
program.

e Outlining by reserving a single copy of the repetitive
code sequence as a function, and replacing all occur-
rences with a jump or call instruction whose target
is the reserved copy. This step commonly changes
the relative offset between instructions, and thus may
invalidate instructions of PC-relative addressing. For
example, in a jump instruction, the offset relative to
the PC register becomes outdated.

e Patching each PC-relative addressing instruction to
update its target with the correct one. There is no need
of patching the call instructions, no matter they are
PC-relative addressing or not. Because the target labels
of call instructions, i.e., function labels, have not been
bound to addresses or offsets at this time. Instead, the
later linking phase after linking-time outlining will
bind function labels to addresses, and relocate the call
instructions to the corresponding addresses.

This basic version of link-time binary code outlining opti-
mization face challenges of correctness issues. The binary
file sometimes embeds data like string literals or constants
directly within the code for performance, which may mislead
the disassembler to mistakenly decode the embedding data
as instructions. In addition, since the target of an indirect
jump instruction is commonly determined by address com-
putation at runtime, at the link-time it is difficult to both

155

evaluate its old target and modify these address computation
instructions to achieve a desiring new address.

To solve these issues, we propose LTBO, a compilation-
assisted link-time binary code outlining method, by record-
ing useful information during the compilation-time and do-
ing the whole program outlining during the linking-time.
The information to collect relates to embedded data, instruc-
tions of PC-relative addressing, terminator instructions, in-
direct jump instructions, slowpath and Java native methods,
and is expected to assist the link-time work to avoid the
correctness issues above.

e Embedding data: Record the embedding data’s offset
and size.

e Instructions of PC-relative addressing: Record the off-
sets of these instructions, as well as those of their
targets.

e Terminator instructions: Record the offsets of instruc-
tions terminating a basic block, such as jump and re-
turn instructions.

e Indirect jump instructions: Record a flag to mark that
the owner method of indirect jump instructions is not
suitable to be outlined due to correctness issues.

e Java native methods: Record a flag to mark Java native
methods. These methods are not suitable to be outlined
due to the difficulty of binary rewriting.

o Slowpath: Record a flag to mark the code in a slowpath.
This code is commonly not frequently executed and
not performance critical, and is suitable to be outlined
even in hot functions.

3.3 LTBO at Linking-time

The information collected at compilation-time can be used
as below.

e The embedding data can be precisely recognized to
avoid disassembling.

e The methods with indirect jump instructions, as well as
Java native methods, can also be precisely recognized
to avoid outlining.

e The information of terminator instructions can be used
to separate basic blocks.



Calibro: Compilation-Assisted Linking-Time Binary Code Outlining for Code Size Reduction in ...

e The information of PC-relative addressing instructions
are enough for them to be patched to keep their offsets
updated.

As a result, the improved, compilation-assisted linking-time
outlining method can be conducted without bothering the
challenging work of thorough disassembling and binary writ-
ing, consisting of four steps: Choosing candidate methods
to outline, detecting repetitive code sequences, outlining
the binary code, and finally patching PC-relative addressing
instructions.

3.3.1 Choosing Candidate Methods to Outline. As stated
before, the methods with indirect jump instructions and the
Java native methods can be recognized using the information
collected during compilation-time, and should be excluded
from the outlining optimization. The remaining methods
constitute the candidate methods to outline.

3.3.2 Detecting Repetitive Code Sequences. The repet-
itive code sequences are detected via a suffix tree based
method, as depicted in Section 2.1.2. Note that for the outlin-
ing aim, each repetitive code sequence should be confined
within a basic block and should not be ended with a termi-
nator instruction, otherwise it is difficult to be outlined into
a single-entry-single-exit function. To enforce this condi-
tion, each terminator instruction collected at compilation-
time will be mapped into a unique separator number. When
building the suffix tree, the separator number terminates a
sequence, thus confining each repetitive code sequence in
the suffix tree within a basic block. Note that the instruction
mapping is simpler right now. In fact, the encoding number
of each instruction can be directly used in the sequence, ex-
cept that all terminator instructions should be mapped to a
single unique separator number.

3.3.3 Outlining the Binary Code. Asstated in Section 2.1,
for each repetitive sequence in the suffix tree, it is simple to
know its length and the number of repeats. Based on this
information and the benefit model illustrated in Figure 2, we
can evaluate whether it is worthwhile to outline a repeti-
tive code sequence into a function. Moreover, based on this
information and the benefit model, we can also choose the
sequence with larger benefit among multiple overlapping
ones to outline.

Once it’s beneficial to outline a code sequence, we can
create a outlined function by reserving the original repet-
itive code sequence, plus an extra instruction jumping to
the return address, as illustrated below. Then, we replace
all occurrences with a call instruction (the bl instruction in
ARM), whose target is the outlined function.

An example is shown in Table 2, where code 1 shows the
original code sequence, with two underlined instructions to
be outlined. The outlined function is shown in code 2, with
an additional br x30 instruction to return to the calling site.
After outlining, in the original code sequence, the outlined
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two underlined instructions are replaced with a single bl
instruction to call the outlined function, as shown in code 3.

3.3.4 Patching PC-relative Addressing Instructions.
The outlining step commonly changes the code size as well as
the relative offsets between instructions, and thus may inval-
idate instructions of PC-relative addressing. In AArch64, the
PC-relative addressing instructions include b, bl, cbz, cbnz,
tbz, tbnz, adr, adrp and Idr. To patch these instructions in or-
der to update the correct target, we can use the information
collected at compilation-time: Each PC-relative addressing
instruction and its target. Assume that after outlining, the
target is placed at a new address, then we can patch this
instruction with the new target address.

As shown in the example in Table 2, after outlining, the
target of the first conditional jump instruction cbz is placed in
a new address 0x138328, and the offset in the c¢bz instruction
is outdated. We should patch this instruction to update its
offset from Oxc to 0x8, updating its target address with the
correct one, as shown in code 4.

3.4 Optimization

As stated above, the LTBO method involves lots of efforts.
The existing Ukkonen algorithm can be used to build a suffix
tree in linear time to the number of machine instructions,

Table 2. An exmaple of code outlining and patching.

// Code 1: Original Code Sequence
0x138320: cbz w0, #+0xc (addr 0x13832c)
0x138324: 1dr w2, [x0]

0x138328: cmp w2, wl

0x13832c: mov x3, x4

0x138330: 1dr x3,[w0]

// Code 2: Outlined Function
0x145224 <MethodQutliner>:
0x145224: 1dr w2, [x0]
0x145228: cmp w2, wl
0x14522c¢: br x30

// Code 3: Replace the Original Code Sequence with
// Outdated Offset

0x138320: cbz w0, #+0xc (addr 0x13832c)

0x138324: bl 145224 <MethodOutliner>

0x138328: mov x3, x4

0x13832c¢: 1dr x3,[w0]

/! Code 4: Patch the Original Code Sequence with
// Updated Offset

0x138320: cbz w0, #+0x8 (addr 0x138328)
0x138324: bl 145224 <MethodOutliner>

0x138328: mov x3, x4

0x13832c¢: 1dr x3,[w0]




CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

which can be very large for popular applications on Android,
often reaching millions. In addition, the global suffix tree
requires a large memory footprint. As a result, the time to
build and search a global suffix tree may take up a large
portion of the building time, as discussed in Section 4.

Meanwhile, the code outlining method potentially impact
the runtime performance, due to the introduced additional
call instructions, which are unfriendly to both CPU pipeline
and code cache, leading to performance degradation.

This paper propose to speed up the code outlining with
paralleled suffix trees, and to mitigate the performance degra-
dation due to code outlining by hot function filtering.

3.4.1 Speeding Up the Code Outlining with Paralleled
Suffix Trees. To speed up the outlining, we propose to build
the suffix tree in parallel. Firstly, we simply partition the
candidate methods into K groups evenly in terms of method
numbers, where the choice of K depends on the parallel
capability of hardware. Considering the time overhead, we
choose a simple and random partition instead of clustering
similar method into a group. Secondly, we build a suffix tree
for each group in parallel. Thirdly, we detect repetitive code
sequences, outline the binary code and patch PC-relative
addressing instructions per suffix tree in parallel.

The benefits of outlining in parallel is two-fold. Firstly,
the capability of hardware parallelism can be exploited to
speed up the computation work of outlining. Secondly, the
outlining speed also benefits from the memory efficiency
due to smaller working set. A global suffix tree often in-
volves a very large working set, which places big burden on
memory footprint and may deteriorate system performance.
Under this situation, partitioning a single large suffix tree
into multiple smaller suffix tree could improve the memory
efficiency. The disadvantage is that the proposed paralleled
outlining method may negatively impact the effectiveness
of code size reduction, since the code outlining is local to
each small suffix tree, may ignoring the common repetitive
sequences across multiple suffix trees. However, the impact
on the effectiveness of code size reduction is tolerable as
illustrated in Table 4.

3.4.2 Mitigating the Performance Degradation Due to
Code Outlining by Hot Function Filtering. It is observed
that, the outlining of hot code can lead to frequently execut-
ing of jump instructions, resulting in significant performance
degradation, whereas the outlining of cold code has negligi-
ble performance impact. In addition, at the instruction level,
some code is used to handle exceptional cases, known as
slowpath, and is commonly cold even within hot functions.

Based on these observations, we propose to mitigate the
performance degradation due to code outlining by hot func-
tion filtering. The workflow is illustrated in Figure 6. It
collects the runtime data for each application using sim-
pleperf[3]. This data primarily includes the execution time
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of each function. The information will guide the next build-
ing, where the code outlining will be applied only to cold
methods and slowpath of hot functions. In evaluation, we
sort the functions by their execution time and choose the
set of top functions that account for 80% of the total execu-
tion time as hot functions to be filtered. The effectiveness of
the hot function filtering performance optimization will be
demonstrated in Section 4.

DE)iFile
Selecting profiling data guiding optimizatio;l Building by DEX20AT
A
profiling data OAT files
Y
Profiling by simpleperf |« Running OAT files

Figure 6. The workflow of the hot function filtering opti-
mization.

3.5 Implementation Discussions

The proposed design is implemented in the Android systems
with lots of system-specific implementation details, among
which StackMap is particularly crucial. StackMap is one of
the most important auxiliary information to support the
correct execution of binary code in ART. It represents the
state mapping relationship between the physical machine
and the abstract DEX virtual machine, which is required by
ART for runtime support, such as stack backtracing, garbage
collection, and exception handling. Any binary code level op-
timization should ensure the consistency between the binary
code and the stackmap by updating it correspondingly.

4 Experimental Evaluation
4.1 Experimental Setup

The experiments were mostly conducted on a Pixel 7 An-
droid phone equipped with the recent Tensor G2 processor
and 8GB of RAM, running on the base version AOSP14 with
build_id UP1A.231005.007 [31], as shown in Table 3. Note
that the LTBO method using a single global suffix tree re-
quires a memory capacity larger than 8GB. As a result, it
cannot be run on the Pixel 7 directly. Given this limitation,
the LTBO with a single thread suffix tree is evaluated on
a desktop equipped with 64 GB of RAM and an Intel Core
i9-13900K CPU, running Ubuntu 22.04 LTS.

We modified ART on the AOSP, recompiled the system
image, and flashed it onto the phone for the experiments.
We evaluated the following methods:

e Baseline: The original AOSP version with all available
code size optimization enabled;
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Table 3. Experimental setup.

Parameters Configuration

Experiment Device Pixel 7 Android Phone

Processor Tensor G2

RAM 8GB

Android Version AOSP14(UP1A.231005.007)

Test Set Commercial Android appli-
cations in OPPO App Market

e CTO: The proposed lightweight compilation-time code
outlining optimization for the three ART-specific repet-
itive code patterns, introduced in Section 3.1;

e LTBO: The proposed link-time outlining optimization
introduced in Section 3.2 and 3.3;

e PIOpti: The paralleled suffix tree optimization intro-
duced in Section 3.4.1, to speed up the repetitive code
sequence detection and elimination work. In this eval-
uation, six threads are enabled to run small suffix trees
in parallel. Note that existing outlining studies com-
monly use a single-threaded suffix tree approach;

o HfOpti: The hot function filtering optimization intro-
duced in Section 3.4.2, which aims to mitigate the run-
time performance degradation due to code outlining.

To reflect the impact on real-world mobile applications, we
tested with real and heavily used commercial Android appli-
cations. We selected the top six downloaded applications
from the OPPO App market, including Toutiao, Taobao,
Tomato Novel, Meituan, Kuaishou, and WeChat.

These Android applications were built under the speed
mode. This mode conducts a full compilation of all dex meth-
ods, aiming to optimize more aggressively to generate code
that runs as fast as possible, often at the expense of other
factors like binary size or compilation time.

The experiment is conducted to evaluate the proposed
compilation-assisted link-time code outlining method from
the following four aspects:

e The code size reduction of the OAT file on disk, i.e.,
the size reduction of text segment. This evaluates the
saving of storage resources due to the proposed meth-
ods;

e The size reduction on the memory usage, including
both data and code. This evaluates the saving of mem-
ory resources due to the proposed methods;

e The building overhead due to the proposed methods;

e The runtime performance degradation of applications
due to the proposed methods.

4.2 The Code Size Reduction of The OAT File on Disk

We conducted this evaluation as follows. The application is
installed on the Pixel 7 phone, and then the phone is con-
nected via adb to use the pm compile command to generate
OAT files for the application. All applications are compiled

158

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

using the default compilation parameters of the Android
system, and the sizes of the code segments in the generated
OAT files are compared.

Table 4 illustrates the code size reduction under the speed
mode. Specifically, the proposed CTO method reduces the
code segment size by 3.56%, given that this method only
works for three ART-specific repetitive code patterns.

Combining the CTO and the LTBO methods, the code
segment size is reduced by 19.19% on average. The Kuaishou
application shows the most significant reduction, with a
reduction of 21.08%, while the Taobao application shows the
smallest reduction, at 17.78%. Overall, for the six applications,
this method can save more than 400 MB of disk space on the
mobile device.

4.3 The Code Size Reduction on The Memory Usage
of the Runtime OAT File

The OAT files are loaded into memory when the application
runs. Therefore, reducing the code size of OAT files can ef-
fectively reduce the memory usage of the application during
execution. To evaluate the reduction in memory usage of
OAT files, we evaluated as follows. We perform a series of
operations on each application repeatedly. To minimize op-
erational errors, we utilized the uiautomator library [35] to
write automated test scripts, allowing the phone to automat-
ically carry out a series of specified operations repeatedly.
We run the test script 20 times, and the average memory
usage of the OAT files is recorded.

Table 5 illustrates the memory usage under the speed
mode. On average, for the six tested applications, there is a
reduction of 2.03% for the CTO method and 6.82% for this
method combined with the LTBO method, in memory usage.
This result aligns with our expectations and shows that the
proposed approach is promising for mobile devices with
limited memory resources.

4.4 The Building Time Overhead

The proposed CTO and LTBO methods will inevitably intro-
duce building overhead. As stated before, we evaluated the
building time of applications with a single thread suffix tree
on a desktop. Then we evaluated the building time of appli-
cations with the paralleled suffix tree method on the Pixel
7. We evaluated the building time under the speed mode.
Table 6 shows the building time of each application, with or
without the paralleled suffix tree optimization, respectively.

It shows that for the six applications, the unoptimized
code outlining method with a single thread suffix tree results
in a significant overhead in building time, which slows down
the building work by 489.5% on average. Please note that
this slowdown is overly optimistic, considering that the Intel
Core i9 processor is more powerful than the one in the Pixel
7. We analyzed the breakdown of the building overhead and
found that most of the overhead comes from the LTBO work.
Specifically, this is because the building and searching of
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Table 4. The code size reduction of the OAT file under two optimization methods. The last three rows illustrate the ratio of

code size reduction relative to the baseline.

Toutiao Taobao Fanqgie Meituan Kuaishou Wechat AVG
Baseline 357M 225M 264M 247M 612M 388M /
CTO+LTBO 291IM 185M 213M 20IM 483M 311IM /
CTO+LTBO+P1Opti 296M 187M 221M 208M 507M 329M /
CTO+LTBO+PIOpti+HfOpti | 301M 191M 224M 211M 513M 332M /
CTO+LTBO 18.49% 17.78% 19.32% 18.62% 21.08% 19.85%  19.19%
CTO+LTBO+PIOpti 17.06% 16.89% 16.29% 15.79% 17.16% 15.21%  16.40%
CTO+LTBO+PlOpti+HfOpti | 15.69% 15.11% 15.15% 14.57% 16.18% 14.43% 15.19%

Table 5. The memory usage reduction under the speed mode. The last two rows illustrate the memory usage reduction relative

to the baseline.

Toutiao Taobao Fangqie Meituan  Kuaishou Wechat AVG
Baseline 317.7M 175.4M 201.2M 238.1M 329.2M 125.7M /
CTO 314.2M 170.6M 198.0M 238.3M 319.0M 121.0M /
CTO+LTBO | 289.3M 163.4M 186.6M 222.5M 310.7M 116.4M /
CTO 1.10% 2.74% 1.59% -0.08% 3.10% 3.74% 2.03%
CTO+LTBO | 7.26% 6.84% 7.26% 6.55% 5.62% 7.40% 6.82%

a global suffix tree work very slowly. As the number of in-
structions in the tested applications reaches millions, a large
number of computation tasks, as well as worsening memory
efficiency due to the large working set, could significantly
slow down the building work.

As a comparison, with the optimization of the paralleled
suffix tree method, the average building time increases only
by 71%. Here we partitioned the original suffix tree into 8
small suffix trees. The paralleled suffix tree method essen-
tially partitions a big suffix tree into small ones, following
which it builds and searches the small suffix trees in parallel.
The computation task is reduced since small trees shorten
the building and searching time. The memory efficiency can
also be improved since only a proportion of small trees re-
side in memory simultaneously, leading to a much smaller
working set.

The paralleled outlining method may negatively impact
the effectiveness of code size reduction since the code outlin-
ing is local to each small suffix tree. However, as illustrated
in the second to last line of Table 4, the impact on the code
size reduction is tolerable, from 19.19% to 16.40%.

The experiments demonstrated that the proposed LTBO
method, optimized with the parallel suffix tree approach,
significantly mitigates the building overhead while at a tol-
erable loss of code size reduction, making it feasible to be
utilized in a production environment. Moreover, the trade-
offs between building time and the code size reduction can
be selected by adjusting the number of paralleled suffix trees,
depending on the specific requirements.
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4.5 The Runtime Performance Degradation

The code outlining method potentially impacts the runtime
performance, since it always introduces additional call in-
structions. Due to the relatively small impact of the outlining
method on runtime performance, the coarse-grained testing
metrics, such as user experience and video frame rates, are
not suitable to measure the runtime performance variation.

Moreover, to avoid testing errors caused by the phone
overheating and frequency throttling, we used the CPU cycle
count instead of the execution time to measure the runtime
performance variation. We performed a series of operations
on each application repeatedly. To minimize operational er-
rors, we utilized the uiautomator library to write automated
test scripts, allowing the phone to automatically carry out
the specified operations repeatedly. We ran the test script 20
times, and the average CPU cycle counts were recorded.

Table 7 shows the CPU cycle counts under the speed mode.
Without hot function filtering optimization, the six applica-
tions experienced an average performance degradation of
1.51%. With the hot function filtering optimization, the per-
formance degradation is mitigated, from 1.51% to 0.90%. The
applications Toutiao, Fangie, Kuaishou and WeChat showed
performance degradation below 1.0%.

The hot function filtering method may negatively impact
the effectiveness of code size reduction since the hot code is
excluded from the code outlining optimization. However, as
illustrated in the last row of Table 4, the impact on the code
size reduction is tolerable, from 16.40% to 15.19%.
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Table 6. The building time under the speed mode. The last two rows illustrate the building time growth relative to the baseline.

Toutiao  Taobao  Fangie Meituan Kuaishou Wechat AVG
Baseline 32s 14s 23s 17s 1m01s 33s /
CTO+LTBO 3m13s 1m31s 2m09s 1m37s 6m01s 3mO05s /
CTO+LTBO+P1Opti | 55s 24s 39s 29s 1m47s 56s /
CTO+LTBO 503% 550% 461% 471% 492% 460% 489.5%
CTO+LTBO+P1Opti | 71% 71% 69% 70% 75% 69% 70.8%

Table 7. The runtime performance under the speed mode (in CPU cycle count). The last two rows illustrate the ratio of

performance degradation relative to the baseline.

Toutiao Taobao Fanqie Meituan KuaishouWechat AVG
Baseline 42107M 39274M 37216M 31270M 49734M 33041M /
CTO+LTBO+PI1Opti 42989M 39987M 37809M 31967M 50174M 33183M /
CTO+LTBO+P1Opti+HfOpti |42384M 39798M 37524M 31931M 49939M 33031M /
CTO+LTBO+P1Opti 2.09% 1.82% 1.59% 2.23% 0.88% 0.43% 1.51%
CTO+LTBO+Pl1Opti+HfOpti |0.66% 1.33% 0.83% 2.11% 0.41% 0.03% 0.90%

The experiments demonstrated that the proposed CTO and
LTBO methods, optimized with hot function filtering method,
could mitigates the runtime performance degradation while
at a tolerable loss of code size reduction.

5 Related Work

Most related research on code size optimization is conducted
during the compilation time or linking time. Traditional com-
pilation optimization techniques, such as dead code and un-
reachable code elimination [8] and copy propagation [2] help
reduce code size. Recent research includes code outlining
[6, 11, 18, 19, 21, 25], function merging [13, 17, 27-29, 33, 34],
and machine learning [4, 14, 15, 20, 24, 30, 37]. These meth-
ods have largely been effective in the mobile domain.

Function Merging. Function merging reduces code size
by combining multiple identical or similar functions into
one, sharing common parts of the functions while reserving
the different parts with branches. This work relies mainly on
fingerprint-based redundancy detection, which uses function
fingerprints (typically composed of instruction opcodes and
their frequencies [28]) to determine the similarity between
functions. Then, sequence alignment techniques are used to
determine the common parts between two functions.

The early function merging work was used to merge func-
tions with identical parameters, return values, and function
code [17, 34]. Then an extension of merging to structurally

similar but not entirely identical functions was introduced[13].

Building on this, [28] proposed a sequence alignment-based
function merging method capable of theoretically merging
any two functions. Subsequent research [29] has primarily
focused on improving this approach. Additionally, [33] in-
troduced a novel method for identifying similar functions,
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significantly reducing the execution time and peak mem-
ory usage of sequence alignment-based merging techniques.
However, function merging techniques will incur perfor-
mance degradation and compilation overhead, and hinder
the debugging process by increasing complexity, obscuring
context, and complicating the analysis of errors. In addition,
it is not suitable for binary code level due to correctness
issues of thorough binary rewriting.

Machine Learning Based Methods. In recent years, ma-
chine learning and neural network methods have also been
applied to code size reduction. Studies [4, 9, 14, 15, 20, 24, 30,
37] have introduced these approaches, which aim to select
optimal optimization combinations for applications, result-
ing in smaller binary file sizes. There is also work to reduce
code size through recurrent convolution [26]. In methodol-
ogy, these methods are orthogonal to the proposed outlining
method. In practice, these machine learning based methods
are not suitable to reduce code size for Android applications
due to their large amount of compilation time.

Other Methods. It is also found that the function inlining
method may not necessarily increase code size. Instead, func-
tion inlining may reduce code size if applied carefully [10].
Some work eliminates unreachable code by analyzing run-
time data of the program [1]. A new dynamic linking frame-
work is introduced to expand the scope of code size opti-
mization, leading to further size reduction [5].

Code Size Reduction in Android. The compiler tool of
Android systems is the dex2oat tool, which provides opti-
mizations of code size reduction on the HGraph phase [12].
These optimizations include dead code and unreachable code
elimination, strength reduction, write barrier elimination,
implicit safety point checks, loop-invariant code motion,
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constant propagation [2], copy propagation, common subex-
pression elimination [7], partial redundancy elimination [16],
and return merging [12].

6 Conclusion

We analyzed the code redundancy in the binary code of OAT
files, and found several important observations. Based on
these observations, we proposed a compilation-assisted link-
time binary code outlining method. Experimental results
show that the proposed approach reduces code size in An-
droid applications by more than 15.19% on average, with
negligible runtime performance degradation and tolerable
building time overhead. Hence the proposed code outlining
approach is promising for production deployment.
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