
MTE4JNI: A Memory Tagging Method to Protect Java
Heap Memory from Illicit Native Code Access

Huinan Chen
Wuhan University
Wuhan, China

huinan@whu.edu.cn

Jiang Ma∗
Guangdong OPPO Mobile Telecommunications Corp., Ltd.

Dongguan, China
majiang@oppo.com

Chun Jason Xue
MBZUAI

Masdar, United Arab Emirates
jason.xue@mbzuai.ac.ae

Qingan Li∗
Wuhan University
Wuhan, China

qingan@whu.edu.cn

Abstract
With the proliferation of mobile devices in daily life, ensuring
the security and performance of these devices has become
crucial. On Android, the Java Native Interface (JNI) acts as a
bridge, allowing native libraries to directly access Java heap
memory via raw pointers, bypassing Java’s built-in safety
checks. While this offers powerful functionality and perfor-
mance, it also threatens the memory safety of the Java heap.
Recently, Memory Tagging Extension (MTE) is introduced
into the ARM architectures to enhance memory safety, re-
ducing software vulnerabilities caused by illegal memory
operations. This paper proposes MTE4JNI, anMTE-based JNI
checking method, to protect Java heap memory from illicit
native code access. Experimental results on real Android de-
vices demonstrate that, compared to the currently employed
guarded copy method, the proposed MTE4JNI method pro-
vides superior memory safety protection, while significantly
reducing the runtime overhead on average by 11x and 27x
for single-threaded and multi-threaded environments, re-
spectively.

CCS Concepts: • Security and privacy→ Mobile plat-
form security.

Keywords: Memory Tagging Extension, Java Native inter-
face, Memory Security, Java Virtual Machine

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CGO ’25, March 01–05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708933

ACM Reference Format:
Huinan Chen, Jiang Ma, Chun Jason Xue, and Qingan Li. 2025.
MTE4JNI: AMemory TaggingMethod to Protect JavaHeapMemory
from Illicit Native Code Access. In Proceedings of the 23rd ACM/IEEE
International Symposium on Code Generation and Optimization (CGO
’25), March 01–05, 2025, Las Vegas, NV, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3696443.3708933

1 Introduction
With the widespread use of mobile devices in our daily lives,
the security of mobile applications has become increasingly
important. According to information published by Google
on its security blog, over 75% of vulnerabilities on the An-
droid platform are due to memory safety violations [22]. To
mitigate memory safety violations, most applications on An-
droid devices are written in Java or Kotlin, which run in the
Java Virtual Machine (JVM) environment with automatic
memory management and various safety checks, including
strong typing, array bounds checking, etc.
However, alongside the JVM, developers often utilize na-

tive code for the underlying features of the operating system
or for runtime performance. As a result, Java applications
inevitably need to call native binary code written in native
programming languages like C++ via the Java Native In-
terface (JNI) [12, 16]. During the execution of native code,
the safety checks present in the JVM are absent. In JNI, cer-
tain functions allow native code to obtain the raw memory
address of Java heap objects. With these raw pointers, the
native code, outside of the JVM, may manipulate the Java
heap memory in an unrestricted manner, such as performing
pointer arithmetic. These unsafe manipulations of Java heap
memory may lead to undetected memory safety violations
such as buffer overflows, which could cause unpredictable
harm to the subsequent execution of the program [23–25],
affecting the protection of user data and the stability of ap-
plications. To detect whether a native method has performed
illegal memory operations, such as out-of-bounds access us-
ing pointers returned by the JNI interface, Android Runtime
(ART) currently uses the guarded copy method[2], which
supports limited out-of-bound memory access checking, as

377

https://orcid.org/0009-0001-6677-4741
https://orcid.org/0009-0004-0259-0144
https://orcid.org/0000-0002-6431-9868
https://orcid.org/0000-0003-0110-5405
https://doi.org/10.1145/3696443.3708933
https://doi.org/10.1145/3696443.3708933
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696443.3708933&domain=pdf&date_stamp=2025-03-01


CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Huinan Chen, Jiang Ma, Chun Jason Xue, and Qingan Li

discussed in Section 2.3, at the cost of significant runtime
overhead to slowdown the JNI interface performance by 20X,
as illustrated in Section 5.3, which hinders guarded copy
from the default production configuration.
ARM introduced the Memory Tagging Extension (MTE)

[3] recently in its ARMv8.5-A architecture, to enhance mem-
ory safety by helping to detect memory corruption issues
such as buffer overflows and use-after-free errors. MTE helps
identify memory access violations by tagging memory re-
gions and checking these tags during access. There are many
recent studies aimed at enhancing program security[13, 19,
26] with this MTE feature.
The support for MTE was introduced in Android 12 to

enhance the memory safety and security of native mem-
ory. If ARM’s MTE is integrated into the Android Runtime
(ART) JNI interface, it could provide developers with a se-
cure runtime environment to detect vulnerabilities during
the development phase. This integration would not only
help prevent attacks exploiting memory safety issues in Java
native methods but also significantly enhance the overall
security of Android applications. However, to the best of our
knowledge, no prior work has been proposed to utilize the
MTE feature specifically for safeguarding Java heap memory,
despite its critical role in protecting user data and ensuring
stable program execution.
To fill this void, this paper proposes MTE4JNI, an MTE-

based JNI checking method, to protect Java heap memory
from illicit native code access. The method leverages MTE
features to set memory tags on Java objects accessed by
native methods, and pointer tags on pointers returned to na-
tive methods. This allows the MTE mechanism to detect the
out-of-bound memory accesses by comparing each memory
tag and the corresponding pointer tag. Experimental results
demonstrate that, compared to the guarded copy method
supported in the Android runtime, the proposed MTE4JNI
approach provides enhanced memory safety protection, with
tolerable runtime overhead, demonstrating the potential for
MTE4JNI to be applied in production environments. The
contributions of this work are summarized as follows:

• We propose a novel memory safety protection method,
MTE4JNI, to protect Java heap memory from illicit
native code access;
• Based on ARM’s Memory Tagging Extension (MTE),
we implement the MTE4JNI approach into the Android
runtime;
• We conduct a comprehensive set of experiments to
evaluate the performance and security enhancement
of our proposed method. Experimental results on real
Android devices demonstrate that, compared to the
currently employed guarded copy method, the pro-
posed MTE4JNI method provides superior memory

safety protection, while significantly reducing the run-
time overhead on average by 11x and 27x for single-
threaded and multi-threaded environments, respec-
tively.

2 Background and Motivation
2.1 Memory Tagging Extension
ARM’s Memory Tagging Extension (MTE) is an innovative
hardware security feature introduced in the ARMv8.5a in-
struction set, designed to help detect and prevent memory-
related vulnerabilities, such as buffer overflows and use-after-
free errors [3].
The basic idea of applying MTE mechanism for memory

safety works is as below. Upon the creation of a memory
block, i.e., at allocation time, MTE assigns the same tag to
a memory block (called memory tag) and to the returned
memory pointer (called pointer tag). Ideally, it is expected
that the memory tags can be used to differentiate different
allocations of memory blocks. Later, on each memory access
with this pointer, the memory tag and the pointer tag are
checked and a mismatch indicates an unsafe memory access.

Figure 1. Overview of Memory Tagging Extension

Specifically, according to the ARMMTE specification, each
16-byte aligned memory unit shares a single memory tag.
The memory tags are stored in system memory and can be
cached by the CPU. As shown in Figure 1, the pointer tag is
placed in the 56-59th bits of the returned pointer, providing
4 bits in total. Note that a 64-bit address used only the lowest
48 bits, while the 48-64th bits are reserved. When accessing
a memory block via a pointer, the processor compares the
pointer tag stored in the 56-59th bits of this pointer, with
the corresponding memory tag of this pointer (memory ad-
dress). ARMv8.5a provides specific instructions to support
this work.

378



MTE4JNI: A Memory Tagging Method to Protect Java Heap Memory from Illicit Native Code Access CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

For example, in the case of out-of-bound memory access,
the memory tag 𝑡𝑎𝑔𝑜 of the out-of-bound memory block will
be different from that 𝑡𝑎𝑔𝑖 of the in-bound memory block,
with the rare exception that these two blocks belong to the
same aligned 16-byte memory block. As stated above, since
the pointer tag is stored in the reserved bits of the pointer
itself, the new pointer generated by pointer arithmetic will
inherit these bits and thus keep the in-bound pointer tag
𝑡𝑎𝑔𝑖 unchanged. As a result, upon an out-of-bound memory
access, a mismatch between the memory tag 𝑡𝑎𝑔𝑜 and the
pointer tag 𝑡𝑎𝑔𝑖 will be detected.

The Linux kernel currently supports ARM’s Memory Tag-
ging Extension (MTE), offering various error-checkingmodes
to determine the most suitable memory safety mechanism,
for different requirements of performance and security in var-
ious applications[1]. The error-checking modes provided by
Linux mainly include synchronous and asynchronous modes.
The synchronous mode checks the tag consistency imme-
diately upon memory access, and if a mismatch is detected,
an exception is synchronously generated, allowing develop-
ers to promptly locate and diagnose memory-related issues.
The asynchronous mode allows the program to continue
execution even after detecting a tag mismatch, only logging
the error occurrence. This mode is suitable for scenarios
with high-performance requirements where the overhead of
synchronous checking cannot be tolerated.

2.2 Native Method and Java Native Interface
In Java, a native method is a method that is implemented
in platform-specific code, typically in C or C++. It allows
Java applications to call native libraries that is not written in
Java, such as systemAPIs or high-performance mathematical
libraries. This help Java applications to perform tasks that are
challenging to execute within the Java environment, such as
direct access to operating system features or high-efficiency
computations.

The Java Native Interface (JNI) is a standard programming
interface on the Java platform that allows Java code to inter-
act with native code written in other languages. JNI serves
as a bridge between Java and native methods, as well as be-
tween native code and Java methods. Through JNI, not only
Java code can invoke native code, but also native code can
create new Java objects, invoke methods of Java classes, read
and write fields of Java objects, catch and throw exceptions,
and more.
One of the common tasks in native methods is to manip-

ulate objects in the Java heap. In JNI, some interfaces may
return a raw pointer of the Java heap object to native meth-
ods, as illustrated in the first column of Table 1. If the raw
pointers returned by these JNI interfaces are used carelessly
or maliciously by the native code, it may corrupt the Java
heap memory while bypassing the memory safety checks

enforced by the JVM. Therefore, buggy native code can com-
promise the memory safety of the Java heap, leading to secu-
rity vulnerabilities or program crashes. After the native code
finishes its work with this pointer, the corresponding release
interfaces are used to release these pointers, as illustrated in
the second column of Table 1.

2.3 Guarded Copy
To detect whether a native method has performed illegal
memory operations, such as out-of-bounds accesses using
pointers returned by the JNI interface, the ART currently uses
the guarded copy method[2]. As shown in Figure 2, the basic
idea of guarded copy is that: (1) When native code requests
the address of a heap object, the object is copied, and two
red zones, prefilled with a specific repeating canary pattern
string, are added before and after the copy respectively; (2)
After the native code has finished manipulating the object,
the red zones are checked to ensure each value still matches
the canary string before releasing. This checks whether out-
of-bound writes occur during the execution of the native
code; (3) If changed, an out-of-bounds memory operation is
detected. Otherwise, the copy is used to update the original
heap object.

Figure 2. The guarded copy method

However, this method has several limitations. Firstly, it can
only detect out-of-bounds write accesses, not out-of-bounds
reads, since out-of-bounds reads never change values. Sec-
ondly, if the out-of-bounds access surpasses and skips the
red zones, the error cannot be detected. Thirdly, this method
has a significant impact on performance due to the intro-
duced memory copying and synchronization, as discussed
in Section 5.3. Lastly, it can only detect whether an error has
occurred, without providing more detailed information.

2.4 Motivation and Challenges
This paper is motivated to propose amemory taggingmethod
to protect Java heap memory from illicit native code access.
We can modify the JNI interfaces in Table 1 to specifically
allocate the memory tag for the memory block of the array or
string before returning the pointer. The pointer would then
be returned to native code with the corresponding pointer
tag. Enabling the MTE-based error-checking mode, native
code can access the array normally, while any attempt to
perform out-of-bounds access using the pointer would be
immediately detected by the processor, triggering an excep-
tion. After the native code finishes its work with this pointer,
we can modify the JNI release interfaces in Table 1 to release
the memory tag for the corresponding memory block.

379



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Huinan Chen, Jiang Ma, Chun Jason Xue, and Qingan Li

Table 1. JNI Interfaces Returning Raw Pointers to Heap Memory

Get interface Release interface Pointers to

GetStringCritical ReleaseStringCritical String
GetPrimitiveArrayCritical ReleasePrimitiveArrayCritical Primitive array
GetStringChars ReleaseStringChars String
GetStringUTFChars ReleaseStringUTFChars UTF-encoded String
Get*ArrayElements Release*ArrayElements Primitive array
Get*ArrayRegion Release*ArrayRegion Portion of primitive array

* can be any of the following primitive types: byte, char, short, int, long, float, double

However, there are a couple of challenges to overcome to
enable this MTE-based JNI checking in Android systems for
multi-threaded scenarios.

• A unique memory tag should be allocated to an ob-
ject’s memory block upon returning its pointer, and
applied to both the pointer and the memory block.
However, Android applications are commonly highly
multi-threaded, and native code threads may concur-
rently obtain the raw pointer of the same Java object.
In such cases, it is critical to efficiently share the same
tag among concurrent threads and ensure that the tag
is only released after all threads have finished using it.
• When a JNI native thread accesses a tagged memory
block, there may be concurrent supporting threads,
such as the garbage collection thread, accessing the
same memory block with non-tagged pointers. This
could lead to segmentation faults due to failed tag
checking. Differentiating between these concurrent
threads and enabling MTE checking mechanisms at
the thread level is crucial. This challenge is further
exacerbated by Android’s complicated architecture,
making it necessary to integrate MTE functionality
without disrupting system compatibility.

3 The Design of MTE4JNI
This paper proposes amemory taggingmethod calledMTE4JNI,
to protect Java heap memory from illicit native code access.
The proposed MTE4JNI method includes the following three
parts:

• Memory tag allocation. Before a specific JNI interface
returns the raw pointer of a Java object to the native
code, an appropriate tag should be allocated to the 56-
59th bits of the pointer, and the same tag should also
be allocated to the addressed memory block, which
may consist of multiple 16-byte aligned memory sub-
blocks.
• Memory tag release. After the native code has finished
using the pointer and invoked the JNI release interface
to release it, the memory tag of the object must be
released in time to reduce the portability of tag con-
flict. Otherwise, different allocations of memory blocks

sharing the same tag may confuse the error-checking
of MTE.
• MTE enabling. TheMTE error-checking feature should
be enabled or disabled at appropriatemoments to avoid
errors during concurrent access to heap objects by
other threads such as garbage collection threads.

3.1 Memory Tag Allocation
Memory tag allocation is required before a specific JNI in-
terface returns the raw pointer of a Java object to the native
code. This work aims to address the challenge of concur-
rent memory access to a Java object in a multi-threaded
environment. A unique memory tag should be allocated to
an object’s memory block upon returning its pointer to the
native code, to apply the same tag to the pointer and the
memory block. However, in a multi-threaded environment,
threads of native code may obtain the raw pointers of the
same Java object concurrently. Hence it is critical to share
the same tag for all the returned pointers as well as the object
in an efficient way.

A naive solution is to provide a global lock for the memory
tag allocation work. Each of concurrent native thread should
acquire the lock first and then the memory tag allocation
can be conducted exclusively. However, this naive solution
is too coarse-grained and will cause significant overhead, as
every thread of JNI interfaces must compete for this global
lock. To address this issue, we design a memory tag alloca-
tion algorithm based on reference counting with a two-tier
locking scheme.

3.1.1 The Reference Counting Scheme. Before a mem-
ory tag is allocated in a thread of native code, we use a
reference count to track whether other threads are already
executing native code and have obtained a pointer to a Java
object. If the reference count indicates that the object has
already been tagged, there is no need to generate a new tag.
We simply increment the reference count by one and directly
return the tagged pointer. This enables concurrent threads
to share the same tag. Otherwise, if there is no other thread
of native code holding this object, we generate a random tag,
setting it to both the memory tag as well as the pointer tag.
Then, the reference count increments by one, and the tagged
pointer is returned.

380



MTE4JNI: A Memory Tagging Method to Protect Java Heap Memory from Illicit Native Code Access CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

3.1.2 The Two-tier Locking Scheme. Since we have in-
troduced a global reference count for each object accessed
by native code, there is a risk of concurrent access to the ref-
erence count itself. A naive idea is to introduce a global lock
to ensure that only one thread can access or modify the refer-
ence count at a time. However, using a global lock to ensure
thread safety may severely impact performance. Therefore,
we propose a finer-grained two-tier locking scheme to ad-
dress this issue.
We maintain 𝑘 hash tables. In a hash table, each key rep-

resents the starting address of an object, and each value is
a tuple with two elements, where one element is the ad-
dress of the reference count for the object, and the other
is the address of the dedicated lock for the object. The set
of Java objects simultaneously accessed by native code are
distributed across 𝑘 hash tables based on the lower part of
each object’s starting address.
Each hash table is guarded with a dedicated table lock to

ensure thread safety. When a thread of native code accesses
a hash table to obtain the reference count address and the
dedicated lock address of an object, the corresponding table
lock must be held. Once the addresses are retrieved, the table
lock is immediately released. Similarly, each object is guarded
with a dedicated object lock to ensure thread safety. When
a thread of native code accesses the reference count and
memory tag of an object, the object lock must be held. Once
this task is finished, the object lock is released immediately.

3.1.3 The Complete Memory Tag Allocation Algo-
rithm. Combining the aforementioned reference counting
mechanism and the two-tier lock mechanism, the memory
tag allocation algorithmworks as follows. Firstly, determines
the target hash table by directly using the lowest part of the
object’s address as the index. Secondly, retrieve or create the
reference count for this object. Thirdly, retrieve or create
the memory tag for this object. Lastly, generate the tagged
pointer and return. The detailed algorithm is illustrated in
Algorithm 1. This algorithm resolves the issue of concurrent
access in a multi-threaded environment while minimizing
the performance impact caused by locking.

3.2 Memory Tag Release
Memory tag release is required after the native code has
finished using the pointer and invoked the JNI interface to
release it. It decrements the reference count by one first.
When the updated reference count becomes zero, it indicates
that no other thread of native code is holding a pointer to
this object, allowing us to safely release the memory tags for
this object.
This work also needs to ensure thread safety in a multi-

threaded environment.We rely on the two-tier locking scheme
described earlier to guard the access to each hash table by a
table lock and guard the access to the reference count and
memory tag of an object by an object lock.

Algorithm 1: The Memory Tag Allocation Algo-
rithm
Input :Memory start address begin, memory end

address end
Output :Tagged pointer to the memory region

// 1. Determine which hash table to use based on begin address

hashTableIndex ← begin
16 mod 16;

// 2. Retrieve or create the reference count
lock the specific hash table’s lock
hashTableLocks[hashTableIndex];
if begin exists in the hash table
hashTables[hashTableIndex] then

Retrieve referenceNum and mutexAddr from the
hash table;

else
Create new referenceNum and mutexAddr ;
Insert begin→ {referenceNum, mutexAddr} into
hashTables[hashTableIndex];

unlock the specific hash table’s lock
hashTableLocks[hashTableIndex];

// 3. Retrieve or create the memory tag
lock mutexAddr ;
Increment referenceNum;
if referenceNum > 1 then

Load existing memory tags using ldg instruction;
else

Generate new memory tags using irg instruction;
Apply new tags to memory from begin to end
using st2g and stg instructions;

// 4. Generate tagged pointer and return
unlock mutexAddr ;
Generate tagged pointer by applying the memory tag
to begin address;
return Tagged pointer;

Thememory tag release algorithmworks as follows. Firstly,
determines the target hash table by directly using the lowest
part of the object’s address as the index. Secondly, retrieve
the reference count for this object. Finally, optionally releas-
ing the memory tag. The detailed algorithm is illustrated in
Algorithm 2.

3.3 Enabling the MTE Error Checking Mechanism
Currently, the Linux system provides some support for ARM
MTE, but we can only use the prctl system call to enable or
disable the MTE error-checking mechanism at the process
level. However, during the actual execution of a Java applica-
tion, when one user thread enters the native code section to
access the Java memory, other supporting threads such as the

381



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Huinan Chen, Jiang Ma, Chun Jason Xue, and Qingan Li

Algorithm 2: The Memory Tag Releasing Algorithm
Input :Memory start address begin, memory end

address end
Output :None

// 1. Determine which hash table to use based on begin address

hashTableIndex ← begin
16 mod 16;

// 2. Retrieve the reference count
lock the specific hash table’s lock
hashTableLocks[hashTableIndex];
if begin exists in the hash table
hashTables[hashTableIndex] then

Retrieve referenceNum and mutexAddr from the
hash table;

else
// If no entry exists, nothing needs to be done
unlock the specific hash table’s lock
hashTableLocks[hashTableIndex];
return;

unlock the specific hash table’s lock
hashTableLocks[hashTableIndex];

// 3. Optionally releasing the memory tag
lock mutexAddr ;
Decrement referenceNum;
if referenceNum == 0 then

// Release memory tags if the reference count is zero
Set the memory tags to 0 from begin to end;

unlock mutexAddr ;

garbage collection (GC) thread, may also be running simulta-
neously. For example, the GC thread could potentially access
the same tagged Java memory, but the pointer in the GC
thread never walks through the JNI interface to be tagged. It
leads to a mismatch and thus an exception of memory access
violation, regardless of in-bounds or out-of-bounds memory
accesses.
To address this issue, we need a thread-level control to

enable MTE error-checking mechanism for user threads with
native code. Although Linux does not provide such an in-
terface, according to ARM’s documentation, we can control
MTE at the thread level by setting the TCO system register.

Specifically, in Android when a Java thread invokes native
code, a trampoline function is used to handle tasks such as
Java thread state transitions and parameter conversions. We
can modify the trampoline function to include instructions
that modify the TCO register to enable MTE. Similarly, after
the native code execution is completed, another trampoline
function is used to return the thread control flow back to
the Java code. We can modify this trampoline function to
modify the TCO register to disable the MTE error-checking
mechanism. It enables the MTE error-checking mechanism

only for threads with native code, ensuring that no excep-
tions are triggered due to a mismatch between the pointer
tag and memory tag when threads are not executing native
code.

4 Implementation Analysis
The proposed approach is implemented in the Android Run-
time, with modifications to the following three parts.
• Heap Memory Allocation: The heap memory alloca-
tion work is modified to adjust the default alignment
of memory allocation to be consistent with the MTE
mechanism, and also enable the MTE checking for the
allocated memory.
• JNI Interfaces: The code within JNI interfaces is modi-
fied to integrate the MTE4JNI mechanism, involving
adding the code for memory tag allocation and release,
respectively.
• Trampoline Functions: The trampoline functions are
modified to flexibly enable or disable the MTE error-
checking mechanism at the thread level.

4.1 Heap Memory Allocation
As discussed above, in theMTEmechanism, memory tags are
set at a 16-byte granularity. The ART’s memory allocator has
the default alignment of 8 bytes, which means the starting
memory address as well as the size of each allocated object
is a multiple of 8. This mismatch between the alignment
of object allocation and the granularity of memory tagging
brings up an issue. Two objects may be allocated into a single
memory block of 16-byte, and thus sharing the same tag. As
a result, the MTE error-checking mechanism is confused to
view the out-of-bounds access within the same block as a
safe one.
To address this issue, we need to modify the alignment

in ART’s memory allocation from 8 bytes to 16 bytes. Al-
though 16-byte alignment may cause minor internal memory
fragmentation, this overhead is generally negligible given
that Java objects are relatively large. Moreover, many align-
ment methods on 64-bit machines default to 16 bytes. During
the heap memory allocation phase, we also need to modify
the protection flags of the heap’s memory-mapped region
by adding PROT_MTE to indicate that the memory will use
memory tagging for enhanced safety and security.

4.2 JNI Interfaces
As discussed above, the memory tag allocation work should
be conducted in each JNI interface that can potentially obtain
a raw pointer to the Java heap objects, to check the safety of
memory accesses due to this pointer. As a result, no matter
whether an object is of a string or an array of any primitive
type, as long as its heap memory address is returned directly,
it will always undergo memory tag allocation before the na-
tive code obtains its memory address. Similarly, the memory

382



MTE4JNI: A Memory Tagging Method to Protect Java Heap Memory from Illicit Native Code Access CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

tag release work should be conducted in the corresponding
JNI release interface to recycle the memory tags.

4.3 Native Method Trampoline Function
As discussed above, the MTE checking mechanism can be
enabled or disabled at the thread level by setting the TCO
system register. Regarding the placement of the enabling or
disabling code, there are three types of native methods to
consider.
In Android, native methods can be annotated with @Fast-
Native and@CriticalNative. For native methods annotated
with@CriticalNative, since they are optimized for maximum
performance and never have access to Java heap objects,
we do not need to consider them. For native methods an-
notated with @FastNative, since they do not involve thread
state transitions, we need to set the TCO register directly in
both the specifically compiled trampoline functions and the
generic trampoline functions. For regular native methods
annotated with neither@FastNative nor@CriticalNative, the
trampoline function always invokes the Java thread state
transition function. Therefore, we insert the code to set the
TCO register within this transition function.

5 Evaluation
5.1 Experimental Setup
The proposed MTE4JNI method is implemented in an OPPO
Find N2 Flip mobile phone with the Color OS 14.0 based on
Android 14, as illustrated in Table 2. To comprehensively

Table 2. Experimental Environment Configuration

Parameter Configuration

Experimental Device OPPO Find N2 Flip
SoC MediaTek Dimensity 9000+
RAM 12GB
System Environment Color OS 14.0 based on Android 14

evaluate the proposed MTE4JNI method compared to the
existing guarded copy method in Android systems, we con-
ducts the following experiments. In this evaluation, we use
16 hash tables in the MTE4JNI method.
• The evaluation of the effectiveness of error check-
ing. This experiment is to verify that the proposed
MTE4JNI method can accurately identify illegal mem-
ory operations in native code;
• The evaluation of runtime overhead for the JNI inter-
faces. This experiment is to verify that the MTE4JNI
method incurs limited performance overhead to the
JNI interfaces;
• The evaluation of runtime performance for other com-
mon tasks. This experiment aims to verify that the
MTE4JNI method incurs a limited performance over-
head for other common tasks.

We compared four schemes as follows:
• No protection scheme: by default, the JNI out-of-bounds
checking is disabled for performance reasons;
• Guarded copy scheme: the existing guarded copy-based
JNI out-of-bounds checking is enabled with specific
options;
• MTE4JNI+Sync scheme: the proposedMTE4JNImethod
is enabled in the synchronous mode;
• MTE4JNI + Async scheme: the proposed MTE4JNI
method is enabled in the asynchronous mode.

5.2 Effectiveness of Out-of-bounds Checking
We run a test program that triggers a buffer overflow to
detect how various methods identify the buffer overflow er-
ror. In the test program, the Java program invokes a native
method, and the native method uses the GetPrimitiveArray-
Critical interface to obtain a pointer to the array object in the
Java heap and performs an out-of-bounds access, incorrectly
modifying the memory location outside the array boundary.
The core native code is illustrated in Figure 3.

Under the no protection scheme, this out-of-bounds write
cannot be checked, and the program terminates normally, un-
aware of the unsafe memory write. Under the guarded copy
scheme, the ART detects the out-of-bounds modification to
the array and provides the offset of the incorrect modifica-
tion by the native method. However, the error is detected
in the JNI release interface, instead of the real native code
doing the out-of-bounds access. The stack trace information
recorded is far away from the faulting location, as illustrated
in Figure 4a.

Figure 3. The core code of the native method. The original
Java object is an array of 18 integers, but the native code
writes into the array with the index of 21, leading an out-of-
bounds write.

Under the synchronous error-checking mode of MTE, the
out-of-bounds access is detected and a segmentation fault
is reported immediately after the native method performs
an out-of-bounds access using the pointer. The stack trace
information recorded is accurate enough to allow precise pin-
pointing of the faulting location, as illustrated in Figure 4b.

Under the asynchronous error-checking mode of MTE, the
out-of-bounds access is detected and a segmentation fault
is reported in a delayed fashion. The stack trace recorded

383



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Huinan Chen, Jiang Ma, Chun Jason Xue, and Qingan Li

is the first system call or context switch that was executed
after the memory corruption happened, which is far away
from the faulting location, as illustrated in Figure 4c.

5.3 Runtime Overhead of JNI Interfaces
The JNI checking methods, either the guarded copy method
or the proposed MTE4JNI method, introduce additional com-
putation tasks to the JNI interface, inevitably causing run-
time overhead. We evaluated the runtime overhead of the
JNI interfaces in both single-thread and multi-thread envi-
ronments.

5.3.1 Single-thread Performance. To evaluate the run-
time overhead in a single-thread environment, we executed
a native method that initially obtains pointers to two Java
integer array objects via a JNI interface. The method then
copies the contents of one array into the other and finally
releases the pointers using the corresponding JNI release
interface.
For a comprehensive evaluation, we provided multiple

versions of array objects with various lengths ranging from
21 to 212 elements of integer, as most objects in popular
Android applications are smaller than 214 bytes [8]. The
execution time of this native method was recorded. Figure
5 shows the execution time for copying arrays of different
lengths under various schemes, normalized to the execution
time without protection. Three observations can be made.
The first observation is that for various array lengths,

the guarded copy scheme always causes the largest over-
head, which is far more than the other schemes. On average,
the guarded copy scheme slowdowns the native method by
26.58 times, while the MTE4JNI-Sync and MTE4JNI-Async
schemes slowdowns the native method by only 2.36 times
and 2.24 times, respectively.
The reason is that different JNI checking schemes intro-

duce additional computation tasks into the JNI interfaces in
different ways. The guarded copy method allocates a mem-
ory block, copies the original Java object to the new memory
block with two red zones on both sides, and performs oper-
ations on this copy. In comparison, the MTE4JNI schemes
allocate a tag for the memory block as well as the returned
pointer and operate directly on the original object. As a re-
sult, the MTE4JNI schemes cause much less overhead than
the guarded copy scheme.

The second observation is that theMTE4JNI-Async scheme
is slightly faster than the MTE4JNI-Sync scheme. This is be-
cause, in the asynchronous mode, tag checks are deferred,
allowing for more efficient processing without blocking.

The third observation is that under all JNI checking schemes,
as the array size increases, the slowdown becomes smaller.
This is because the workload of copying the array increases
linearly with the array size, while the introduced overhead
increases sublinearly, leading to reduced relative overhead
for larger arrays.

5.3.2 Multi-thread Performance. Because the MTE4JNI
method involves the use of locks, there will inevitably be
some negative impact on performance in multi-thread sce-
narios. This evaluation was divided into two tests. In the first
test, multiple threads concurrently read on the same array. In
the second test, each of the concurrent threads reads its own
specific array. Concurrent threads on the same array must
compete for the exclusive locks associated with each object,
object lock, while concurrent threads on different arrays must
compete for the hash table locks, table lock. These tests were
conducted to thoroughly investigate the impact of our lock-
ing mechanism on multi-threaded performance. For each
test, we compared three methods, the proposed MTE4JNI
method with the two-tier locking scheme, MTE4JNI with a
naive global lock, and the guarded copymethod. The first two
methods were evaluated in synchronous and asynchronous
modes separately.

We created 64 threads to concurrently run a native method
that repeatedly reads an array containing 1024 integers 10000
times. In the first test, each thread attempts to access the
same array. In the second test, each thread attempts to access
its own specific array. We then recorded the time taken for
all threads to complete their tasks, as illustrated in Figure 6.

Firstly, it is found that in the first test of assessing the same
array, the execution times of the two-tier locking, global
locking and guarded copy schemes are 1.21x, 1.39x, and
32.9x, respectively. In the second test, the execution times
are 1.21x, 2.20x, and 34.0x, respectively. This is because,
compared to the global locking scheme, the two-tier locking
scheme shortens the critical sections to mitigate stalls due
to lock contention, thus leading to the best performance.
The guarded copy method involves much effort for object
copying, thus leading to the worst performance.
Secondly, it is found that compared with the first test,

the performance gap between the proposed two-tier locking
scheme and the other two schemes is significantly widened
in the second test. This is because when accessing different
arrays, in the two-tier locking scheme threads never com-
pete for the object lock, and compete for the table lock only
when the addresses of these two arrays coexist in the same
hash table, which significantly mitigates the lock contention.
However, in the same situation, the global locking scheme
still causes lock contention for every thread of JNI interface,
and the guarded copy scheme involves copying more objects.

5.4 Common Task Performance Test
To assess the impact of our MTE4JNI scheme on the perfor-
mance of commonly seen tasks, we conducted performance
experiments using the CPU test suite of GeekBench 6.3.0, a
widely used performance testing tool on Android devices [5].
It covers a range of workloads designed to evaluate and
optimize CPU and memory performance. These workloads

384



MTE4JNI: A Memory Tagging Method to Protect Java Heap Memory from Illicit Native Code Access CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

(a) The stack trace information from logcat under the guarded copy scheme. ART detects an error on releasing the pointer and invokes abort,
resulting in the top stack trace showing an abort function.

(b) The stack trace information from logcat under the MTE4JNI-Sync scheme. An out-of-bound access triggers an immediate error detection,
showing the exact faulting instruction in the native method at the top of the stack trace.

(c) The stack trace information from logcat under the MTE4JNI-Async scheme. The error detection is deferred until the next syscall (getuid),
as illustrated at the top of the stack trace.

Figure 4. Stack trace information from logcat under different schemes.

Figure 5. The execution time of the native method for copy-
ing one array into another in a single-threaded environment,
normalized to the no-protection scheme. The y-axis shows
logarithmic values for better comparison.

include data compression, image processing, machine learn-
ing, and code compilation. These workloads are critical for

Figure 6. The execution time for concurrently reading an
array in a multi-threaded environment, normalized to the
execution time under no protection.

various applications, including web browsers, image editors,
and development tools.

385



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Huinan Chen, Jiang Ma, Chun Jason Xue, and Qingan Li

The experiment evaluated GeekBench 6.3.0 in Android
AArch64 under four schemes: the no protection scheme, the
guarded copy scheme, the MTE4JNI+Sync scheme, and the
MTE4JNI+Async scheme.

Figures 7 and 8 show the single-core andmulti-core perfor-
mance scores of the sub-items relative to the no protection
scheme, respectively. In the single-core environment, the
guarded copy, MTE+Sync and MTE+Async schemes cause
performance degradation of 5.90%, 5.33%, and 1.13%, respec-
tively. In the multi-core environment, the guarded copy,
MTE+Sync and MTE+Async schemes cause performance
degradation of 13.50%, 5.12%, and 1.55%, respectively. Excep-
tions are the workloads of Clang, Text Processing, and PDF
Render, which work worse under the MTE+Sync scheme
than under the guarded copy scheme. This reason is, that
these workloads typically cause intensive access within a
large array. Under the MTE+Sync scheme, each access incurs
checking overhead, while under the guarded copy scheme,
the whole array incurs the overhead of data copying only
once. This provides an insight that such memory-intensive
workloads are not suitable for the MTE+Sync scheme.

The results show that compared to the guarded copy
scheme, the proposed MTE4JNI scheme demonstrates perfor-
mance improvements in daily tasks with minimal impact on
performance. In a multi-thread environment, the proposed
MTE4JNI scheme, combined with the asynchronous error-
checking mode, showed a 14% improvement over ART’s
current guarded copy scheme. These results effectively in-
dicate that the MTE4JNI scheme has a minimal impact on
common tasks, proving its feasibility and effectiveness in
practical deployment.

6 Related Work
The related work can be divided into hardware-assisted ap-
proaches and software-based approaches. The former solu-
tions leverage certain hardware features to enhance security,
while the latter can be further divided into native program-
ming language based approaches and JVM runtime based
approaches.

6.1 Hardware-assisted Approaches
At the hardware level, ARM introduced Pointer Authenti-
cation (PA) in ARMv8.3a to enhance memory safety. PA is
designed to defend against pointer-related attacks, such as
return address tampering or function pointer hijacking. Sub-
sequently, numerous studies have explored ways to improve
software security using PA. The PACMem system is pro-
posed to use ARM’s pointer authentication to enhance spatial
and temporal memory safety, reducing security threats from
memory vulnerabilities with minimal performance impact
[11]. PAL is a kernel-level hardware control flow integrity
(CFI) protection mechanism using pointer authentication

[27]. An improved CFI scheme for embedded devices is pro-
posed to enhance defenses against indirect call attacks with
minimal performance overhead [15]. Work explores bypass-
ing ARM’s pointer authentication using speculative execu-
tion, revealing a new security flaw and presenting mitigation
strategies [17]. A toolset leveraging pointer authentication
is proposed to protect C and C++ programs against runtime
attacks, significantly enhancing security with acceptable per-
formance loss [14].

Following this, ARM introduced the Memory Tagging Ex-
tension (MTE) in ARMv8.5a [3]. MTE assigns tags to memory
allocations and verifies them during memory access to de-
tect and prevent illegal memory operations, such as memory
corruption and out-of-bounds access.
Recently, several new studies have emerged in the field

of memory safety based on MTE. A deterministic memory
protection design based on MTE is integrated into LLVM
Clang, enhancing memory safety with minimal runtime
and code size overhead [13]. Multi-Tag, a design employing
multi-granularity tagging is proposed to enhance protec-
tion against spatial and temporal memory violations with-
out increasing memory overhead or system complexity [26].
ZOMETAG is a deterministic spatial safety solution, using
MTE that partitions data memory into zones with unique
tags, combining dual-layer isolation for efficient spatial safety
protection with low overhead [19]. Additionally, Sfitag is
proposed to optimize software fault isolation (SFI) in ARM
kernel extensions with MTE, achieving efficient isolation by
assigning different tag values to untrusted extensions and
the core kernel [18]. A novel approach, called HeMate, is pro-
posed to enhance heap security by isolating primitive data
types using MTE, providing non-probabilistic protection[4].
These studies leverage hardware-level protection mech-

anisms to significantly enhance memory safety. Although
these technologies have shown excellent performance in
enhancing the security of C and C++ programs, their ap-
plication in protecting Java heap memory remains in the
exploratory stage and has yet to be widely implemented.
Our work leverages the MTE hardware features to enhance
the security of the Java language and has demonstrated ex-
cellent performance.

6.2 Native Language Based Approaches
Android 7 integrated AddressSanitizer (ASan) [20], which is
a tool to effectively detect memory errors. To reduce the per-
formance impact of ASan while maintaining a certain level of
protection, GWP-ASan (Guarded Write-Protected Address-
Sanitizer) is proposed based on ASan [21]. GWP-ASan is a
sampling-based tool for detecting memory safety errors in
production environments , integrated into AOSP in Android
11. After ARM introduced the Memory Tagging Extension
(MTE) feature, researchers further developed HWAddress-
Sanitizer (HWASan) based on AddressSanitizer. HWASan

386



MTE4JNI: A Memory Tagging Method to Protect Java Heap Memory from Illicit Native Code Access CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Figure 7. Relative Single-Core Performance of Sub-Items

Figure 8. Relative Multi-Core Performance of Sub-Items

supports memory tagging technology at the hardware level
for more efficient and low-overhead memory error detection.

Android also has protection mechanisms for kernel heap
memory allocations. Android 12 introduced KFENCE (Kernel
Electric Fence), a lightweight tool designed to detect kernel
memory safety errors. It captures common memory safety
issues such as out-of-bounds access and use-after-free by
setting guard areas around allocated kernel heap objects [9].

These studies provide effective memory safety protection
for native programming languages. However, they still have
limitations in protecting Java heap memory. These tools are
primarily targeted at memory errors in native code and offer
limited protection for the Java environment.

6.3 JVM Runtime Based Approaches
At the runtime level, researchers have undertaken various
efforts to mitigate the unsafe factors introduced by JNI. Safe-
JNI is a framework ensuring type safety in heterogeneous
programs involving Java and C components by addressing
JNI vulnerabilities and adding static and dynamic checks
[24]. A software-based fault isolation framework is proposed
to place native code in a sandbox, allowing interaction with
Java only through a controlled path [23]. This framework
has two implementations: one integrated into the JVM and
another external to it, trading some performance for JVM
portability. JNICodejail is proposed to isolate native code
to protect the JVM and Java memory from unauthorized
modifications [7]. The Quarantine framework can mitigate
memory errors in JNI applications by isolating unsafe objects
in a special "JNI Space" and employing a read barrier and
garbage collection mechanism [10].

387



CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Huinan Chen, Jiang Ma, Chun Jason Xue, and Qingan Li

These research efforts primarily focus on developing vari-
ous frameworks and mechanisms to mitigate the risks posed
by JNI and enhance the security and stability of applications.
However, they have several limitations. First, most of these
solutions rely heavily on runtime safety checks and isola-
tion mechanisms, such as sandboxes and memory separation,
which can effectively prevent unsafe access but do not help
developers detect JNI-related vulnerabilities during the de-
velopment phase. Second, many of these frameworks, like
SafeJNI and Quarantine, introduce performance overhead
due to the additional checks required to ensure safety. Third,
some solutions, such as JNICodejail and SafeJNI, require
modifications to the JVM or tight integration with it, adding
complexity to the system. This increases the difficulty of
maintaining and updating these frameworks, particularly
when balancing performance, compatibility, and security.

In the current Android runtime, ART implements Check-
JNI to detect and report JNI call errors, helping developers
improve native code quality and stability [6]. CheckJNI iden-
tifies common errors such as negative array sizes, incorrect
pointers and class names, improper JNI calls, and type safety
issues. Guarded copy is a feature of CheckJNI, aimed at de-
tecting out-of-bounds access in native code. However, as
previously mentioned, it can only detect out-of-bounds write
accesses, not out-of-bounds reads. And if the out-of-bounds
access surpasses and skips the red zones, the error cannot
be detected. Besides, this method has a significant impact
on performance due to the introduced memory copying and
synchronization. What’s more, it can only detect whether
an error has occurred, without providing detail information
of the faulting location.
This paper, by leveraging hardware features, not only

performs better in terms of efficiency but also has a stronger
error detection capability.

7 Conclusion
We developed a novel memory safety protection method,
MTE4JNI, aimed at safeguarding Java heap memory from
illicit native code access. Leveraging ARM’s Memory Tag-
ging Extension (MTE), we integrated this approach into the
Android runtime. Experimental results on real Android de-
vices demonstrated that, compared to the currently employed
guarded copy method, the proposed MTE4JNI method pro-
vided superior memory safety protection, while significantly
reducing the runtime overhead on average by 11x and 27x
for single-threaded and multi-threaded environments, re-
spectively.

Acknowledgments
We thank all the reviewers for their insightful comments.
This work was supported by the National Key Research and
Development Program of China (No. 2022YFB3104502), Na-
tional Natural Science Foundation of China (No. 62472330,

No. 62272348), the State Key Laboratory of Computer Archi-
tecture (ICT, CAS) under Grant No. CARCH A202112 and
OPPO Research Fund.

References
[1] 2020. Memory Tagging Extension (MTE) in AArch64 Linux. https://docs.

kernel.org/arch/arm64/memory-tagging-extension.html Accessed:
2024-03-31.

[2] Android Open Source Project. 2023. Garbage Collection Debugging in
ART and Dalvik. https://source.android.com/docs/core/runtime/gc-
debug. Accessed: 2023-07-31.

[3] ARM. 2021. Armv8.5-A Memory Tagging Extension. White Pa-
per. ARM Holdings. https://documentation-service.arm.com/static/
624ea580caabfd7b3c13e23f Accessed: 2023-03-29.

[4] Yu-Chang Chen and Shih-Wei Li. 2024. HeMate: Enhancing Heap
Security through Isolating Primitive Types with Arm Memory Tag-
ging Extension. In Proceedings of the 19th International Conference
on Availability, Reliability and Security (Vienna, Austria) (ARES ’24).
Association for Computing Machinery, New York, NY, USA, Article
30, 11 pages. https://doi.org/10.1145/3664476.3664492

[5] Geekbench. 2023. Geekbench 6 CPU Workloads. https://www.
geekbench.com/doc/geekbench6-cpu-workloads.pdf Accessed: 2023-
03-29.

[6] Google Developers. 2011. Debugging Android JNI with Check-
JNI. https://android-developers.googleblog.com/2011/07/debugging-
android-jni-with-checkjni.html Accessed: 2024-03-31.

[7] Behnaz Hassanshahi and Roland H. C. Yap. 2013. JNICodejail: native
code isolation for Java programs. In Proceedings of the 2013 International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools (Stuttgart, Germany)
(PPPJ ’13). Association for Computing Machinery, New York, NY, USA,
173–176. https://doi.org/10.1145/2500828.2500848

[8] Jiacheng Huang, Yunmo Zhang, Junqiao Qiu, Yu Liang, Rachata
Ausavarungnirun, Qingan Li, and Chun Jason Xue. 2024. More
Apps, Faster Hot-Launch on Mobile Devices via Fore/Background-
aware GC-Swap Co-design. In Proceedings of the 29th ACM Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 3, ASPLOS 2024, La Jolla, CA,
USA, 27 April 2024- 1 May 2024, Rajiv Gupta, Nael B. Abu-Ghazaleh,
Madan Musuvathi, and Dan Tsafrir (Eds.). ACM, 654–670. https:
//doi.org/10.1145/3620666.3651377

[9] Nikolai Joukov, Aditya Kashyap, Gopalan Sivathanu, and Erez Zadok.
2005. An electric fence for kernel buffers. In Proceedings of the 2005
ACMWorkshop on Storage Security and Survivability (Fairfax, VA, USA)
(StorageSS ’05). Association for Computing Machinery, New York, NY,
USA, 37–43. https://doi.org/10.1145/1103780.1103786

[10] Du Li and Witawas Srisa-an. 2011. Quarantine: a framework to mit-
igate memory errors in JNI applications. In Proceedings of the 9th
International Conference on Principles and Practice of Programming in
Java. 1–10.

[11] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying
Liu, and Chao Zhang. 2022. PACMem: Enforcing Spatial and Temporal
Memory Safety via ARM Pointer Authentication. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing
Machinery, New York, NY, USA, 1901–1915. https://doi.org/10.1145/
3548606.3560598

[12] Sheng Liang. 1999. Java Native Interface: Programmer’s Guide and
Reference. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc. isbn.

[13] Hans Liljestrand, Carlos Chinea, Rémi Denis-Courmont, Jan-Erik Ek-
berg, and N Asokan. 2022. Color My World: Deterministic Tagging
for Memory Safety. arXiv preprint arXiv:2204.03781 (2022).

388

https://docs.kernel.org/arch/arm64/memory-tagging-extension.html
https://docs.kernel.org/arch/arm64/memory-tagging-extension.html
https://source.android.com/docs/core/runtime/gc-debug
https://source.android.com/docs/core/runtime/gc-debug
https://documentation-service.arm.com/static/624ea580caabfd7b3c13e23f
https://documentation-service.arm.com/static/624ea580caabfd7b3c13e23f
https://doi.org/10.1145/3664476.3664492
https://www.geekbench.com/doc/geekbench6-cpu-workloads.pdf
https://www.geekbench.com/doc/geekbench6-cpu-workloads.pdf
https://android-developers.googleblog.com/2011/07/debugging-android-jni-with-checkjni.html
https://android-developers.googleblog.com/2011/07/debugging-android-jni-with-checkjni.html
https://doi.org/10.1145/2500828.2500848
https://doi.org/10.1145/3620666.3651377
https://doi.org/10.1145/3620666.3651377
https://doi.org/10.1145/1103780.1103786
https://doi.org/10.1145/3548606.3560598
https://doi.org/10.1145/3548606.3560598


MTE4JNI: A Memory Tagging Method to Protect Java Heap Memory from Illicit Native Code Access CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

[14] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez,
Jan-Erik Ekberg, and N Asokan. 2019. {PAC} it up: Towards pointer
integrity using {ARM} pointer authentication. In 28th USENIX Security
Symposium (USENIX Security 19). 177–194.

[15] Pascal Nasahl, Robert Schilling, and Stefan Mangard. 2021. Protecting
Indirect Branches Against Fault Attacks Using ARM Pointer Authenti-
cation. In 2021 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). 68–79. https://doi.org/10.1109/HOST49136.
2021.9702268

[16] Oracle. 2014. Java Native Interface Specification. https://docs.oracle.
com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html Accessed:
2024-03-31.

[17] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022.
PACMAN: attacking ARM pointer authentication with speculative
execution. In Proceedings of the 49th Annual International Symposium
on Computer Architecture (New York, New York) (ISCA ’22). Association
for Computing Machinery, New York, NY, USA, 685–698. https://doi.
org/10.1145/3470496.3527429

[18] Jiwon Seo, Junseung You, Yungi Cho, Yeongpil Cho, Donghyun Kwon,
and Yunheung Paek. 2023. Sfitag: Efficient Software Fault Isolation
with Memory Tagging for ARM Kernel Extensions. In Proceedings
of the 2023 ACM Asia Conference on Computer and Communications
Security (Melbourne, VIC, Australia) (ASIA CCS ’23). Association for
Computing Machinery, New York, NY, USA, 469–480. https://doi.org/
10.1145/3579856.3590341

[19] Jiwon Seo, Junseung You, Donghyun Kwon, Yeongpil Cho, and Yunhe-
ung Paek. 2023. ZOMETAG: Zone-Based Memory Tagging for Fast,
Deterministic Detection of Spatial Memory Violations on ARM. IEEE
Transactions on Information Forensics and Security 18 (2023), 4915–4928.
https://doi.org/10.1109/TIFS.2023.3299454

[20] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. 2012. {AddressSanitizer}: A fast address sanity

checker. In 2012 USENIX annual technical conference (USENIX ATC 12).
309–318.

[21] Kostya Serebryany, Chris Kennelly, Mitch Phillips, Matt Denton, Marco
Elver, Alexander Potapenko, Matt Morehouse, Vlad Tsyrklevich, Chris-
tian Holler, Julian Lettner, David Kilzer, and Lander Brandt. 2024.
GWP-ASan: Sampling-Based Detection of Memory-Safety Bugs in
Production. (2024). arXiv:2311.09394 [cs.SE]

[22] Jeff Vander Stoep and Chong Zhang. 2019. Queue the Harden-
ing Enhancements. https://security.googleblog.com/2019/05/queue-
hardening-enhancements.html Accessed: 2024-03-31.

[23] Mengtao Sun, Gang Tan, Joseph Siefers, Bin Zeng, and Greg Morrisett.
2013. Bringing java’s wild native world under control. ACM Trans.
Inf. Syst. Secur. 16, 3, Article 9 (dec 2013), 28 pages. https://doi.org/10.
1145/2535505

[24] Gang Tan, AndrewWAppel, Srimat Chakradhar, Anand Raghunathan,
Srivaths Ravi, and Daniel Wang. 2006. Safe Java native interface.
In Proceedings of IEEE International Symposium on Secure Software
Engineering, Vol. 97. Citeseer, 106.

[25] Gang Tan and Jason Croft. 2008. An Empirical Security Study of the
Native Code in the JDK.. In Usenix Security Symposium. 365–378.

[26] Martin Unterguggenberger, David Schrammel, Pascal Nasahl, Robert
Schilling, Lukas Lamster, and Stefan Mangard. 2023. Multi-tag: A
hardware-software co-design for memory safety based on multi-
granular memory tagging. In Proceedings of the 2023 ACM Asia Con-
ference on Computer and Communications Security. 177–189.

[27] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim.
2022. In-Kernel Control-Flow Integrity on Commodity OSes using
ARM Pointer Authentication. In 31st USENIX Security Symposium
(USENIX Security 22). USENIX Association, Boston, MA, 89–106. https:
//www.usenix.org/conference/usenixsecurity22/presentation/yoo

Received 2024-09-12; accepted 2024-11-04

389

https://doi.org/10.1109/HOST49136.2021.9702268
https://doi.org/10.1109/HOST49136.2021.9702268
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://doi.org/10.1145/3470496.3527429
https://doi.org/10.1145/3470496.3527429
https://doi.org/10.1145/3579856.3590341
https://doi.org/10.1145/3579856.3590341
https://doi.org/10.1109/TIFS.2023.3299454
https://arxiv.org/abs/2311.09394
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://doi.org/10.1145/2535505
https://doi.org/10.1145/2535505
https://www.usenix.org/conference/usenixsecurity22/presentation/yoo
https://www.usenix.org/conference/usenixsecurity22/presentation/yoo

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Memory Tagging Extension
	2.2 Native Method and Java Native Interface
	2.3 Guarded Copy
	2.4 Motivation and Challenges

	3 The Design of MTE4JNI
	3.1 Memory Tag Allocation
	3.2 Memory Tag Release
	3.3 Enabling the MTE Error Checking Mechanism

	4 Implementation Analysis
	4.1 Heap Memory Allocation
	4.2 JNI Interfaces
	4.3 Native Method Trampoline Function

	5 Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of Out-of-bounds Checking
	5.3 Runtime Overhead of JNI Interfaces
	5.4 Common Task Performance Test

	6 Related Work
	6.1 Hardware-assisted Approaches
	6.2 Native Language Based Approaches
	6.3 JVM Runtime Based Approaches

	7 Conclusion
	Acknowledgments
	References

